Pimecrolimus: absorption, distribution, metabolism, and excretion in healthy volunteers after a single oral dose and supplementary investigations in vitro.

Article Details

Citation

Zollinger M, Waldmeier F, Hartmann S, Zenke G, Zimmerlin AG, Glaenzel U, Baldeck JP, Schweitzer A, Berthier S, Moenius T, Grassberger MA

Pimecrolimus: absorption, distribution, metabolism, and excretion in healthy volunteers after a single oral dose and supplementary investigations in vitro.

Drug Metab Dispos. 2006 May;34(5):765-74. Epub 2006 Feb 7.

PubMed ID
16467136 [ View in PubMed
]
Abstract

The absorption and disposition of pimecrolimus, a calcineurin inhibitor developed for the treatment of inflammatory skin diseases, was investigated in four healthy volunteers after a single oral dose of 15 mg of [(3)H]pimecrolimus. Supplementary information was obtained from in vitro experiments. Pimecrolimus was rapidly absorbed. After t(max) (1-3 h), its blood concentrations fell quickly to 3% of C(max) at 24 h, followed by a slow terminal elimination phase (average t(1/2) 62 h). Radioactivity in blood decreased more slowly (8% of C(max) at 24 h). The tissue and blood cell distribution of pimecrolimus was high. The metabolism of pimecrolimus in vivo, which could be well reproduced in vitro (human liver microsomes), was highly complex and involved multiple oxidative O-demethylations and hydroxylations. In blood, pimecrolimus was the major radiolabeled component up to 24 h (49% of radioactivity area under the concentration-time curve(0-24) h), accompanied by a large number of minor metabolites. The average fecal excretion of radioactivity between 0 and 240 h amounted to 78% of dose and represented predominantly a complex mixture of metabolites. In urine, 0 to 240 h, only about 2.5% of the dose and no parent drug was excreted. Hence, pimecrolimus was eliminated almost exclusively by oxidative metabolism. The biotransformation of pimecrolimus was largely catalyzed by CYP3A4/5. Metabolite pools generated in vitro showed low activity in a calcineurin-dependent T-cell activation assay. Hence, metabolites do not seem to contribute significantly to the pharmacological activity of pimecrolimus.

DrugBank Data that Cites this Article

Drug Enzymes
DrugEnzymeKindOrganismPharmacological ActionActions
PimecrolimusCytochrome P450 3A4ProteinHumans
Unknown
Substrate
Details