Computational analysis of ligand recognition sites of homo- and heteropentameric 5-HT3 receptors.

Article Details

Citation

Moura Barbosa AJ, De Rienzo F, Ramos MJ, Menziani MC

Computational analysis of ligand recognition sites of homo- and heteropentameric 5-HT3 receptors.

Eur J Med Chem. 2010 Nov;45(11):4746-60. doi: 10.1016/j.ejmech.2010.07.039. Epub 2010 Jul 27.

PubMed ID
20724042 [ View in PubMed
]
Abstract

Inhibition of the 5-hydroxytryptamine receptor (5-HT(3)R), a member of the Cys-loop superfamily of Ligand-Gated Ion Channels (LGICs), has been recognized to have important antiemetic effects. With respect to the many other drugs already in use, such as the first generation 5-HT(3)R antagonist granisetron, palonosetron, a second generation antagonist, clearly demonstrates superior inhibition potency towards the 5-HT(3)Rs. Five different receptor monomers, the 5-HT(3)R A-E, have been identified although the A and B subunits are the only known to build functional receptors, the homopentameric 5-HT(3A)R and the heteropentameric 5-HT(3B-A)R (with BBABA subunit arrangement). At present, however, no three-dimensional structure has been reported for any of the 5-HT(3)R subunits. To understand the binding properties of agonists and antagonists, models of the extracellular portion of the 5-HT(3)R A and B subunits are built and assembled into the receptor (homo- and hetero-) pentameric structure on the basis of the known three-dimensional structure of the nicotinic-acetylcholine receptor (nACh-R). The results of docking studies of the natural agonist serotonin and the antagonists palonosetron and granisetron into the modelled homomeric and heteromeric 5-HT(3)R binding interfaces, provide a possible rationalization both of the higher potency of palonosetron with respect to other antagonists, and of its previously reported allosteric binding and positive cooperativity properties.

DrugBank Data that Cites this Article

Binding Properties
DrugTargetPropertyMeasurementpHTemperature (°C)
Granisetron5-hydroxytryptamine receptor 3AKi (nM)3.98N/AN/ADetails