Lobeglitazone

Identification

Generic Name
Lobeglitazone
DrugBank Accession Number
DB09198
Background

Lobeglitazone is an antidiabetic medication from the thiazolidinedione class of drugs. It primarily functions as an insulin sensitizer by binding and activating Peroxisome Proliferator-Activated Receptors (PPAR) gamma within fat cells. By activating PPAR-gamma and promoting the binding of insulin at fat cells, lobeglitazone thereby has been shown to reduce blood sugar levels, lower hemoglobain A1C (HbA1C) levels, and improve lipid and liver profiles 1. Unlike Pioglitazone, which is a dual PPAR agonist at PPAR-alpha and PPAR-gamma, Lobeglitazone is a pure PPAR-alpha agonist.

Lobeglitazone was approved by the Ministry of Food and Drug Safety (South Korea) in 2013, and is being monitored by postmarketing surveillance until 2019. Lobeglitazone is not approved for use by either the Food and Drug Administration (USA), Health Canada, or by the European Medicines Agency for use in the management of diabetes.

Type
Small Molecule
Groups
Experimental
Structure
Weight
Average: 480.54
Monoisotopic: 480.146741063
Chemical Formula
C24H24N4O5S
Synonyms
  • Lobeglitazone
External IDs
  • CKD 501
  • CKD-501
  • CKD501

Pharmacology

Indication

Lobeglitazone was approved by the Ministry of Food and Drug Safety (South Korea) in 2013, and is being monitored by postmarketing surveillance until 2019. Lobeglitazone is not approved for use by either the Food and Drug Administration (USA), Health Canada, or by the European Medicines Agency for use in the management of diabetes.

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Not Available

Mechanism of action

Lobeglitazone acts as an insulin sensitizer by binding and activating Peroxisome Proliferator-Activated Receptors (PPAR) gamma within fat cells. By promoting the binding of insulin at fat cells, lobeglitazone has been shown to reduce blood sugar levels, lower hemoglobain A1C (HbA1C) levels, and improve lipid and liver profiles 1. Unlike Pioglitazone, which is a dual PPAR agonist at PPAR-alpha and PPAR-gamma, Lobeglitazone is a pure PPAR-alpha agonist.

TargetActionsOrganism
APeroxisome proliferator-activated receptor alpha
agonist
Humans
APeroxisome proliferator-activated receptor gamma
activator
Humans
Absorption

In rat studies, the AUC for the doses 0.5, 1, and 2 mg/kg, AUC values were determined to be 459, 514, and 481 ug min/mL respectively. Absoprtion occurs rapidly after administration, with Tmax of 67.5 and 48.8 min and a Cmax of 0.962 and 0.4.94 ug/mL following doses of 0.5 and 2 mg/kg, respectively. Absolute bioavailability after oral administration was nearly complete and apparently not affected by the dosage; 92.1% following a 0.5 mg/kg dose and 99.0% following a 2 mg/kg dose. Furthermore, the extent of LB remaining in the GI tract at 24 h was found to be negligible, with values less than 0.2% of the oral dose, suggesting that the intestinal absorption is complete in rats at the dose range studied 2.

Volume of distribution

The steady state volume of distribution (Vss) of lobeglitazone was found to be 189–276 mL/kg. Vss was not found to vary statistically with the dose, suggesting that lobeglitazone follows linear kinetics 2.

Protein binding

Lobeglitazone was found to bind extensively to plasma proteins (i.e., up to 99.9%) with no appreciable concentration dependency on the unbound fraction 2.

Metabolism

Rat studies with lobeglitazone have suggested that it is primarily metabolized by cytochrome P450 (CYP) isozymes 2, however the exact enzymes involved in its metabolism have yet to be elucidated. The structure of Lobeglitazone's five major metabolites have been characterized along with their pharmacokinetic parameters, and can be seen in the metabolism section below. In rat studies, demethylation and hydroxylation appear to be the primary metabolic pathways. The most abundant metabolite found in these studies was confirmed in vivo as M1, a demethylated derivative of lobeglitazone; its rate of formation was found to be approximately 0.216 ∼ 0.252 mL/min/kg, representing approximately 9.76% of the total lobeglitazone elimination in vivo in rats 5.

Hover over products below to view reaction partners

Route of elimination

It has been reported that the combined extent of the excretion of lobeglitazone to the bile, urine and intestine is low (less than 10% of total dose), suggesting that the major route of elimination for the drug involves its metabolism 2.

Half-life

Following an intravenous dosage of 1 mg/kg, the half life was found to be 110 min 2.

Clearance

In rat studies, systemic clearance was found to be between 1.95 and 2.19 mL/min/kg regardless of dosage 2.

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

Lobeglitazone showed a similar adverse effect profile to pioglitazone, another thiazolidinedione medication from the same class. The most concerning side effects found were edema and weight gain, with no severe adverse effects. Notably, there were no observable changes to patients with heart failure, which is a concern associated with other medications of the same class 3.

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
AbametapirThe serum concentration of Lobeglitazone can be increased when it is combined with Abametapir.
AbataceptThe metabolism of Lobeglitazone can be increased when combined with Abatacept.
AbirateroneThe metabolism of Lobeglitazone can be decreased when combined with Abiraterone.
AbrocitinibThe metabolism of Abrocitinib can be decreased when combined with Lobeglitazone.
AcarboseThe risk or severity of hypoglycemia can be increased when Acarbose is combined with Lobeglitazone.
Food Interactions
Not Available

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
Product Ingredients
IngredientUNIICASInChI Key
lobeglitazone sulfate95C712E83PNot AvailableNot applicable
International/Other Brands
Duvie (Chong Kun Dang)

Categories

ATC Codes
A10BG04 — LobeglitazoneA10BD26 — Metformin and lobeglitazone
Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as diarylethers. These are organic compounds containing the dialkyl ether functional group, with the formula ROR', where R and R' are aryl groups.
Kingdom
Organic compounds
Super Class
Organic oxygen compounds
Class
Organooxygen compounds
Sub Class
Ethers
Direct Parent
Diarylethers
Alternative Parents
Phenoxy compounds / Methoxybenzenes / Anisoles / Dialkylarylamines / Thiazolidinediones / Alkyl aryl ethers / Aminopyrimidines and derivatives / Imidolactams / Heteroaromatic compounds / Dicarboximides
show 7 more
Substituents
Alkyl aryl ether / Aminopyrimidine / Anisole / Aromatic heteromonocyclic compound / Azacycle / Benzenoid / Carbonic acid derivative / Carbonyl group / Carboxylic acid derivative / Dialkylarylamine
show 18 more
Molecular Framework
Aromatic heteromonocyclic compounds
External Descriptors
Not Available
Affected organisms
Not Available

Chemical Identifiers

UNII
MY89F08K5D
CAS number
607723-33-1
InChI Key
CHHXEZSCHQVSRE-UHFFFAOYSA-N
InChI
InChI=1S/C24H24N4O5S/c1-28(21-14-22(26-15-25-21)33-19-9-7-17(31-2)8-10-19)11-12-32-18-5-3-16(4-6-18)13-20-23(29)27-24(30)34-20/h3-10,14-15,20H,11-13H2,1-2H3,(H,27,29,30)
IUPAC Name
5-{[4-(2-{[6-(4-methoxyphenoxy)pyrimidin-4-yl](methyl)amino}ethoxy)phenyl]methyl}-1,3-thiazolidine-2,4-dione
SMILES
COC1=CC=C(OC2=NC=NC(=C2)N(C)CCOC2=CC=C(CC3SC(=O)NC3=O)C=C2)C=C1

References

Synthesis Reference

Kim BY, Ahn JB, Lee HW, Kang SK, Lee JH, Shin JS, Ahn SK, Hong CI, Yoon SS: Synthesis and biological activity of novel substituted pyridines and purines containing 2,4-thiazolidinedione. Eur J Med Chem. 2004 May;39(5):433-47.

General References
  1. Lee YH, Kim JH, Kim SR, Jin HY, Rhee EJ, Cho YM, Lee BW: Lobeglitazone, a Novel Thiazolidinedione, Improves Non-Alcoholic Fatty Liver Disease in Type 2 Diabetes: Its Efficacy and Predictive Factors Related to Responsiveness. J Korean Med Sci. 2017 Jan;32(1):60-69. doi: 10.3346/jkms.2017.32.1.60. [Article]
  2. Lee JH, Noh CK, Yim CS, Jeong YS, Ahn SH, Lee W, Kim DD, Chung SJ: Kinetics of the Absorption, Distribution, Metabolism, and Excretion of Lobeglitazone, a Novel Activator of Peroxisome Proliferator-Activated Receptor Gamma in Rats. J Pharm Sci. 2015 Sep;104(9):3049-59. doi: 10.1002/jps.24378. Epub 2015 Feb 3. [Article]
  3. Jin SM, Park CY, Cho YM, Ku BJ, Ahn CW, Cha BS, Min KW, Sung YA, Baik SH, Lee KW, Yoon KH, Lee MK, Park SW: Lobeglitazone and pioglitazone as add-ons to metformin for patients with type 2 diabetes: a 24-week, multicentre, randomized, double-blind, parallel-group, active-controlled, phase III clinical trial with a 28-week extension. Diabetes Obes Metab. 2015 Jun;17(6):599-602. doi: 10.1111/dom.12435. Epub 2015 Feb 8. [Article]
  4. Kim BY, Ahn JB, Lee HW, Kang SK, Lee JH, Shin JS, Ahn SK, Hong CI, Yoon SS: Synthesis and biological activity of novel substituted pyridines and purines containing 2,4-thiazolidinedione. Eur J Med Chem. 2004 May;39(5):433-47. [Article]
  5. Lee JH, Ahn SH, Maeng HJ, Lee W, Kim DD, Chung SJ: The identification of lobeglitazone metabolites in rat liver microsomes and the kinetics of the in vivo formation of the major metabolite M1 in rats. J Pharm Biomed Anal. 2015 Nov 10;115:375-82. doi: 10.1016/j.jpba.2015.07.040. Epub 2015 Jul 30. [Article]
PubChem Compound
9826451
PubChem Substance
310265106
ChemSpider
8002194
ChEBI
136052
ChEMBL
CHEMBL3585580
Wikipedia
Lobeglitazone

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns
4CompletedTreatmentFatty Liver, Non-alcoholic Fatty Liver Disease, NAFLD / Type 2 Diabetes Mellitus1somestatusstop reasonjust information to hide
4CompletedTreatmentInadequate Glucose Control / Type 2 Diabetes Mellitus1somestatusstop reasonjust information to hide
4CompletedTreatmentType 2 Diabetes Mellitus2somestatusstop reasonjust information to hide
4RecruitingTreatmentType 2 Diabetes Mellitus2somestatusstop reasonjust information to hide
3CompletedTreatmentType 2 Diabetes Mellitus3somestatusstop reasonjust information to hide

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage Forms
Not Available
Prices
Not Available
Patents
Not Available

Properties

State
Solid
Experimental Properties
Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.0181 mg/mLALOGPS
logP3.84ALOGPS
logP4.31Chemaxon
logS-4.4ALOGPS
pKa (Strongest Acidic)7.61Chemaxon
pKa (Strongest Basic)3.96Chemaxon
Physiological Charge0Chemaxon
Hydrogen Acceptor Count7Chemaxon
Hydrogen Donor Count1Chemaxon
Polar Surface Area102.88 Å2Chemaxon
Rotatable Bond Count10Chemaxon
Refractivity129.63 m3·mol-1Chemaxon
Polarizability49.64 Å3Chemaxon
Number of Rings4Chemaxon
Bioavailability1Chemaxon
Rule of FiveYesChemaxon
Ghose FilterNoChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleYesChemaxon
Predicted ADMET Features
Not Available

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-001i-0051900000-ffee035c5dfdeb3c25e5
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-0fmi-0090200000-02fb1119ae0abd06715d
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-08gi-0124900000-b849a6c9589c41ba993b
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-0kmi-1329800000-4a3900af0279550b7bfe
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-001u-0970600000-4b49926d92b5c0a8b38f
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-0uxr-3923300000-2a732dc35d78c8e0a6a3
Predicted 1H NMR Spectrum1D NMRNot Applicable
Predicted 13C NMR Spectrum1D NMRNot Applicable
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-205.29224
predicted
DeepCCS 1.0 (2019)
[M+H]+207.65245
predicted
DeepCCS 1.0 (2019)
[M+Na]+213.74336
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Agonist
General Function
Ligand-activated transcription factor. Key regulator of lipid metabolism. Activated by the endogenous ligand 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety. Receptor for peroxisome proliferators such as hypolipidemic drugs and fatty acids. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as a transcription activator for the ACOX1 and P450 genes. Transactivation activity requires heterodimerization with RXRA and is antagonized by NR2C2. May be required for the propagation of clock information to metabolic pathways regulated by PER2
Specific Function
Dna binding
Gene Name
PPARA
Uniprot ID
Q07869
Uniprot Name
Peroxisome proliferator-activated receptor alpha
Molecular Weight
52224.595 Da
References
  1. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Activator
General Function
Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated pro-inflammatory responses. Plays a role in the regulation of cardiovascular circadian rhythms by regulating the transcription of BMAL1 in the blood vessels (By similarity)
Specific Function
Alpha-actinin binding
Gene Name
PPARG
Uniprot ID
P37231
Uniprot Name
Peroxisome proliferator-activated receptor gamma
Molecular Weight
57619.58 Da
References
  1. Lee JH, Noh CK, Yim CS, Jeong YS, Ahn SH, Lee W, Kim DD, Chung SJ: Kinetics of the Absorption, Distribution, Metabolism, and Excretion of Lobeglitazone, a Novel Activator of Peroxisome Proliferator-Activated Receptor Gamma in Rats. J Pharm Sci. 2015 Sep;104(9):3049-59. doi: 10.1002/jps.24378. Epub 2015 Feb 3. [Article]

Enzymes

Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:19965576, PubMed:9435160). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:19965576, PubMed:9435160). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:11555828, PubMed:12865317). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2 (PubMed:11555828, PubMed:12865317). Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). May act as a major enzyme for all-trans retinoic acid biosynthesis in the liver. Catalyzes two successive oxidative transformation of all-trans retinol to all-trans retinal and then to the active form all-trans retinoic acid (PubMed:10681376). Primarily catalyzes stereoselective epoxidation of the last double bond of polyunsaturated fatty acids (PUFA), displaying a strong preference for the (R,S) stereoisomer (PubMed:19965576). Catalyzes bisallylic hydroxylation and omega-1 hydroxylation of PUFA (PubMed:9435160). May also participate in eicosanoids metabolism by converting hydroperoxide species into oxo metabolites (lipoxygenase-like reaction, NADPH-independent) (PubMed:21068195). Plays a role in the oxidative metabolism of xenobiotics. Catalyzes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin (PubMed:14725854). Metabolizes caffeine via N3-demethylation (Probable)
Specific Function
Aromatase activity
Gene Name
CYP1A2
Uniprot ID
P05177
Uniprot Name
Cytochrome P450 1A2
Molecular Weight
58406.915 Da
References
  1. Lee JH, Noh CK, Yim CS, Jeong YS, Ahn SH, Lee W, Kim DD, Chung SJ: Kinetics of the Absorption, Distribution, Metabolism, and Excretion of Lobeglitazone, a Novel Activator of Peroxisome Proliferator-Activated Receptor Gamma in Rats. J Pharm Sci. 2015 Sep;104(9):3049-59. doi: 10.1002/jps.24378. Epub 2015 Feb 3. [Article]
  2. Jung JA, Lee SY, Kim TE, Kim JR, Kim C, Huh W, Ko JW: Lack of the effect of lobeglitazone, a peroxisome proliferator-activated receptor-gamma agonist, on the pharmacokinetics and pharmacodynamics of warfarin. Drug Des Devel Ther. 2015 Mar 2;9:737-43. doi: 10.2147/DDDT.S76591. eCollection 2015. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids and steroids (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:15766564, PubMed:19965576, PubMed:7574697, PubMed:9866708). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Exhibits low catalytic activity for the formation of catechol estrogens from 17beta-estradiol (E2) and estrone (E1), namely 2-hydroxy E1 and E2 (PubMed:12865317). Catalyzes bisallylic hydroxylation and hydroxylation with double-bond migration of polyunsaturated fatty acids (PUFA) (PubMed:9435160, PubMed:9866708). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan (PubMed:25994031)
Specific Function
(r)-limonene 6-monooxygenase activity
Gene Name
CYP2C9
Uniprot ID
P11712
Uniprot Name
Cytochrome P450 2C9
Molecular Weight
55627.365 Da
References
  1. Lee JH, Noh CK, Yim CS, Jeong YS, Ahn SH, Lee W, Kim DD, Chung SJ: Kinetics of the Absorption, Distribution, Metabolism, and Excretion of Lobeglitazone, a Novel Activator of Peroxisome Proliferator-Activated Receptor Gamma in Rats. J Pharm Sci. 2015 Sep;104(9):3049-59. doi: 10.1002/jps.24378. Epub 2015 Feb 3. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
Curator comments
Data supporting this enzyme inhibition is limited.
General Function
A cytochrome P450 monooxygenase involved in the metabolism of polyunsaturated fatty acids (PUFA) (PubMed:18577768, PubMed:19965576, PubMed:20972997). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18577768, PubMed:19965576, PubMed:20972997). Catalyzes the hydroxylation of carbon-hydrogen bonds. Hydroxylates PUFA specifically at the omega-1 position (PubMed:18577768). Catalyzes the epoxidation of double bonds of PUFA (PubMed:19965576, PubMed:20972997). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine. Hydroxylates fenbendazole at the 4' position (PubMed:23959307)
Specific Function
(r)-limonene 6-monooxygenase activity
Gene Name
CYP2C19
Uniprot ID
P33261
Uniprot Name
Cytochrome P450 2C19
Molecular Weight
55944.565 Da
References
  1. Lee JH, Noh CK, Yim CS, Jeong YS, Ahn SH, Lee W, Kim DD, Chung SJ: Kinetics of the Absorption, Distribution, Metabolism, and Excretion of Lobeglitazone, a Novel Activator of Peroxisome Proliferator-Activated Receptor Gamma in Rats. J Pharm Sci. 2015 Sep;104(9):3049-59. doi: 10.1002/jps.24378. Epub 2015 Feb 3. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981)
Specific Function
1,8-cineole 2-exo-monooxygenase activity
Gene Name
CYP3A4
Uniprot ID
P08684
Uniprot Name
Cytochrome P450 3A4
Molecular Weight
57342.67 Da
References
  1. Jaakkola T, Backman JT, Neuvonen M, Neuvonen PJ: Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics of pioglitazone. Clin Pharmacol Ther. 2005 May;77(5):404-14. doi: 10.1016/j.clpt.2004.12.266. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Substrate
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Primarily catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) with a preference for the last double bond (PubMed:15766564, PubMed:19965576, PubMed:7574697). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes all trans-retinoic acid toward its 4-hydroxylated form (PubMed:11093772). Displays 16-alpha hydroxylase activity toward estrogen steroid hormones, 17beta-estradiol (E2) and estrone (E1) (PubMed:14559847). Plays a role in the oxidative metabolism of xenobiotics. It is the principal enzyme responsible for the metabolism of the anti-cancer drug paclitaxel (taxol) (PubMed:26427316)
Specific Function
Arachidonic acid epoxygenase activity
Gene Name
CYP2C8
Uniprot ID
P10632
Uniprot Name
Cytochrome P450 2C8
Molecular Weight
55824.275 Da
References
  1. Jaakkola T, Backman JT, Neuvonen M, Neuvonen PJ: Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics of pioglitazone. Clin Pharmacol Ther. 2005 May;77(5):404-14. doi: 10.1016/j.clpt.2004.12.266. [Article]
  2. Sahi J, Black CB, Hamilton GA, Zheng X, Jolley S, Rose KA, Gilbert D, LeCluyse EL, Sinz MW: Comparative effects of thiazolidinediones on in vitro P450 enzyme induction and inhibition. Drug Metab Dispos. 2003 Apr;31(4):439-46. [Article]

Transporters

Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
Mediates the Na(+)-independent uptake of organic anions (PubMed:10358072, PubMed:15159445, PubMed:17412826). Shows broad substrate specificity, can transport both organic anions such as bile acid taurocholate (cholyltaurine) and conjugated steroids (dehydroepiandrosterone 3-sulfate, 17-beta-glucuronosyl estradiol, and estrone 3-sulfate), as well as eicosanoids (prostaglandin E2, thromboxane B2, leukotriene C4, and leukotriene E4), and thyroid hormones (T4/L-thyroxine, and T3/3,3',5'-triiodo-L-thyronine) (PubMed:10358072, PubMed:10601278, PubMed:10873595, PubMed:11159893, PubMed:12196548, PubMed:12568656, PubMed:15159445, PubMed:15970799, PubMed:16627748, PubMed:17412826, PubMed:19129463, PubMed:26979622). Can take up bilirubin glucuronides from plasma into the liver, contributing to the detoxification-enhancing liver-blood shuttling loop (PubMed:22232210). Involved in the clearance of endogenous and exogenous substrates from the liver (PubMed:10358072, PubMed:10601278). Transports coproporphyrin I and III, by-products of heme synthesis, and may be involved in their hepatic disposition (PubMed:26383540). May contribute to regulate the transport of organic compounds in testes across the blood-testis-barrier (Probable). Can transport HMG-CoA reductase inhibitors (also known as statins), such as pravastatin and pitavastatin, a clinically important class of hypolipidemic drugs (PubMed:10601278, PubMed:15159445, PubMed:15970799). May play an important role in plasma and tissue distribution of the structurally diverse chemotherapeutic drug methotrexate (PubMed:23243220). May also transport antihypertension agents, such as the angiotensin-converting enzyme (ACE) inhibitor prodrug enalapril, and the highly selective angiotensin II AT1-receptor antagonist valsartan, in the liver (PubMed:16624871, PubMed:16627748). Shows a pH-sensitive substrate specificity towards prostaglandin E2 and T4 which may be ascribed to the protonation state of the binding site and leads to a stimulation of substrate transport in an acidic microenvironment (PubMed:19129463). Hydrogencarbonate/HCO3(-) acts as the probable counteranion that exchanges for organic anions (PubMed:19129463)
Specific Function
Bile acid transmembrane transporter activity
Gene Name
SLCO1B1
Uniprot ID
Q9Y6L6
Uniprot Name
Solute carrier organic anion transporter family member 1B1
Molecular Weight
76447.99 Da
References
  1. Lee JH, Noh CK, Yim CS, Jeong YS, Ahn SH, Lee W, Kim DD, Chung SJ: Kinetics of the Absorption, Distribution, Metabolism, and Excretion of Lobeglitazone, a Novel Activator of Peroxisome Proliferator-Activated Receptor Gamma in Rats. J Pharm Sci. 2015 Sep;104(9):3049-59. doi: 10.1002/jps.24378. Epub 2015 Feb 3. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
Putative organic anion antiporter with apparent broad substrate specificity. Recognizes various substrates including thyroid hormone L-thyroxine, prostanoids such as prostaglandin E1 and E2, bile acids such as taurocholate, glycolate and glycochenodeoxycholate and peptide hormones such as L-arginine vasopressin, likely operating in a tissue-specific manner (PubMed:10873595, PubMed:14631946, PubMed:16971491, PubMed:19129463, PubMed:30063921). The transport mechanism, its electrogenicity and potential tissue-specific counterions remain to be elucidated (Probable)
Specific Function
Organic anion transmembrane transporter activity
Gene Name
SLCO3A1
Uniprot ID
Q9UIG8
Uniprot Name
Solute carrier organic anion transporter family member 3A1
Molecular Weight
76552.135 Da
References
  1. Lee JH, Noh CK, Yim CS, Jeong YS, Ahn SH, Lee W, Kim DD, Chung SJ: Kinetics of the Absorption, Distribution, Metabolism, and Excretion of Lobeglitazone, a Novel Activator of Peroxisome Proliferator-Activated Receptor Gamma in Rats. J Pharm Sci. 2015 Sep;104(9):3049-59. doi: 10.1002/jps.24378. Epub 2015 Feb 3. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
No
General Function
Translocates drugs and phospholipids across the membrane (PubMed:2897240, PubMed:35970996, PubMed:8898203, PubMed:9038218). Catalyzes the flop of phospholipids from the cytoplasmic to the exoplasmic leaflet of the apical membrane. Participates mainly to the flop of phosphatidylcholine, phosphatidylethanolamine, beta-D-glucosylceramides and sphingomyelins (PubMed:8898203). Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells (PubMed:2897240, PubMed:35970996, PubMed:9038218)
Specific Function
Abc-type xenobiotic transporter activity
Gene Name
ABCB1
Uniprot ID
P08183
Uniprot Name
ATP-dependent translocase ABCB1
Molecular Weight
141477.255 Da
References
  1. Lee JH, Noh CK, Yim CS, Jeong YS, Ahn SH, Lee W, Kim DD, Chung SJ: Kinetics of the Absorption, Distribution, Metabolism, and Excretion of Lobeglitazone, a Novel Activator of Peroxisome Proliferator-Activated Receptor Gamma in Rats. J Pharm Sci. 2015 Sep;104(9):3049-59. doi: 10.1002/jps.24378. Epub 2015 Feb 3. [Article]

Drug created at October 16, 2015 22:12 / Updated at August 26, 2024 19:23