Pharmacological characterization of AC-90179 [2-(4-methoxyphenyl)-N-(4-methyl-benzyl)-N-(1-methyl-piperidin-4-yl)-acetamide hydrochloride]: a selective serotonin 2A receptor inverse agonist.

Article Details

Citation

Vanover KE, Harvey SC, Son T, Bradley SR, Kold H, Makhay M, Veinbergs I, Spalding TA, Weiner DM, Andersson CM, Tolf BR, Brann MR, Hacksell U, Davis RE

Pharmacological characterization of AC-90179 [2-(4-methoxyphenyl)-N-(4-methyl-benzyl)-N-(1-methyl-piperidin-4-yl)-acetamide hydrochloride]: a selective serotonin 2A receptor inverse agonist.

J Pharmacol Exp Ther. 2004 Sep;310(3):943-51. Epub 2004 Apr 21.

PubMed ID
15102927 [ View in PubMed
]
Abstract

The primary purpose of the present series of experiments was to characterize the in vitro and in vivo pharmacology profile of 2-(4-methoxy-phenyl)-N-(4-methyl-benzyl)-N-(1-methyl-piperidin-4-yl)-acetamide hydrochloride (AC-90179), a selective serotonin (5-HT2A) receptor inverse agonist, in comparison with the antipsychotics haloperidol and clozapine. The secondary purpose was to characterize the pharmacokinetic profile of AC-90179. Like all atypical antipsychotics, AC-90179 shows high potency as an inverse agonist and competitive antagonist at 5HT2A receptors. In addition, AC-90179 exhibits antagonism at 5HT2C receptors. In contrast, AC-90179 does not have significant potency for D2 and H1 receptors that have been implicated in the dose-limiting side effects of other antipsychotic drugs. The ability of AC-90179 to block 5-HT2A receptor signaling in vivo was demonstrated by its blockade of the rate-decreasing effects of the 5-HT2A agonist, (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride, under a fixed ratio schedule of reinforcement. Similar to clozapine and haloperidol, AC-90179 attenuated phencyclidine-induced hyperactivity. Although haloperidol impaired acquisition of a simple autoshaped response and induced cataleptic-like effects at behaviorally efficacious doses, AC-90179 and clozapine did not. Furthermore, unlike haloperidol and clozapine, AC-90179 did not decrease spontaneous locomotor behavior at efficacious doses. Limited oral bioavailability of AC-90179 likely reflects rapid metabolism rather than poor absorption. Taken together, a compound with a similar pharmacological profile as AC-90179 and with increased oral bioavailability may have potential for the treatment of psychosis.

DrugBank Data that Cites this Article

Binding Properties
DrugTargetPropertyMeasurementpHTemperature (°C)
Clozapine5-hydroxytryptamine receptor 2AKi (nM)1N/AN/ADetails
Clozapine5-hydroxytryptamine receptor 2CKi (nM)1.8N/AN/ADetails
Haloperidol5-hydroxytryptamine receptor 2AKi (nM)70.2N/AN/ADetails