Design, synthesis, and biological activities of classical N-[4-[2-(2-amino-4-ethylpyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-l-glutamic acid and its 6-methyl derivative as potential dual inhibitors of thymidylate synthase and dihydrofolate reductase and as potential antitumor agents.

Article Details

Citation

Gangjee A, Yu J, Kisliuk RL, Haile WH, Sobrero G, McGuire JJ

Design, synthesis, and biological activities of classical N-[4-[2-(2-amino-4-ethylpyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-l-glutamic acid and its 6-methyl derivative as potential dual inhibitors of thymidylate synthase and dihydrofolate reductase and as potential antitumor agents.

J Med Chem. 2003 Feb 13;46(4):591-600.

PubMed ID
12570380 [ View in PubMed
]
Abstract

Two novel analogues, N-[2-amino-4-ethyl[(pyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-l-glutamic acid (2) and N-[2-amino-4-ethyl-6-methyl[(pyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-l-glutam ic acid (4), were designed and synthesized as potent dual inhibitors of thymidylate synthase (TS) and dihydrofolate reductase (DHFR) and as antitumor agents. Compound 2 had inhibitory potency against human DHFR similar to N-[4-[2-(amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-L -glutamic acid (LY231514) and 1, whereas 4 was inactive against human DHFR. Both 2 and 4 were more potent than LY231514 against E. coliTS. Against human TS, 2 was 7-fold less potent than LY231514 and 4 showed similar inhibitory activity as LY231514. In contrast to 2, which was an efficient substrate of human folypolyglutamate synthetase (FPGS), 4 was a poor substrate of FPGS. Compound 2 showed GI50 values in the nanomolar range against more than 18 human tumor cell lines in the standard NCI preclinical in vitro screen.

DrugBank Data that Cites this Article

Binding Properties
DrugTargetPropertyMeasurementpHTemperature (°C)
MethotrexateDihydrofolate reductaseIC 50 (nM)22N/AN/ADetails
TrimethoprimDihydrofolate reductaseIC 50 (nM)3400N/AN/ADetails