Talmapimod

Identification

Generic Name
Talmapimod
DrugBank Accession Number
DB05412
Background

Talmapimod is the first-generation oral p38 MAP kinase inhibitor developed by Scios. It has shown to be effective to cure inflammatory diseases such as Rheumatoid Arthritis.

Type
Small Molecule
Groups
Investigational
Structure
Weight
Average: 513.004
Monoisotopic: 512.199046758
Chemical Formula
C27H30ClFN4O3
Synonyms
  • Talmapimod
External IDs
  • SCIO-469

Pharmacology

Indication

Investigated for use/treatment in pain (acute or chronic) and rheumatoid arthritis.

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Not Available

Mechanism of action

SCIO-469 inhibits p38 kinase, a stimulatory modulator of pro-inflammatory factors including tumor necrosis factor-alpha (TNFa), interleukin-1 (IL-1), and cyclooxygenase-2 (COX-2), all of which are known to contribute to both symptoms and disease progression in patients with Rheumatoid Arthritis (RA). Existing protein-based products that antagonize TNFa have been shown to markedly relieve the symptoms and retard the progression of RA. It also has the potential for additional benefits associated with its inhibition of IL-1 and COX-2.

TargetActionsOrganism
AMitogen-activated protein kinase 14
modulator
Humans
UTumor necrosis factorNot AvailableHumans
UInterleukin-1 betaNot AvailableHumans
UCytochrome c oxidase subunit 2Not AvailableHumans
Absorption

Not Available

Volume of distribution

Not Available

Protein binding

Not Available

Metabolism
Not Available
Route of elimination

Not Available

Half-life

Not Available

Clearance

Not Available

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

Not Available

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
Not Available
Food Interactions
Not Available

Categories

Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as indolecarboxamides and derivatives. These are compounds containing a carboxamide group attached to an indole.
Kingdom
Organic compounds
Super Class
Organoheterocyclic compounds
Class
Indoles and derivatives
Sub Class
Indolecarboxylic acids and derivatives
Direct Parent
Indolecarboxamides and derivatives
Alternative Parents
N-alkylindoles / Indoles / Benzylamines / Aryl ketones / Phenylmethylamines / Aralkylamines / N-alkylpiperazines / Fluorobenzenes / Aryl chlorides / Aryl fluorides
show 13 more
Substituents
1,4-diazinane / Amine / Amino acid or derivatives / Aralkylamine / Aromatic heteropolycyclic compound / Aryl chloride / Aryl fluoride / Aryl halide / Aryl ketone / Azacycle
show 34 more
Molecular Framework
Aromatic heteropolycyclic compounds
External Descriptors
Not Available
Affected organisms
Not Available

Chemical Identifiers

UNII
B1E00KQ6NT
CAS number
309913-83-5
InChI Key
ZMELOYOKMZBMRB-DLBZAZTESA-N
InChI
InChI=1S/C27H30ClFN4O3/c1-16-13-33(17(2)12-32(16)14-18-6-8-19(29)9-7-18)26(35)21-10-20-22(25(34)27(36)30(3)4)15-31(5)24(20)11-23(21)28/h6-11,15-17H,12-14H2,1-5H3/t16-,17+/m0/s1
IUPAC Name
2-{6-chloro-5-[(2R,5S)-4-[(4-fluorophenyl)methyl]-2,5-dimethylpiperazine-1-carbonyl]-1-methyl-1H-indol-3-yl}-N,N-dimethyl-2-oxoacetamide
SMILES
[H][C@]1(C)CN(C(=O)C2=C(Cl)C=C3N(C)C=C(C(=O)C(=O)N(C)C)C3=C2)[C@]([H])(C)CN1CC1=CC=C(F)C=C1

References

General References
  1. Vanderkerken K, Medicherla S, Coulton L, De Raeve H, Willems A, Lawson M, Van Camp B, Protter AA, Higgins LS, Menu E, Croucher PI: Inhibition of p38alpha mitogen-activated protein kinase prevents the development of osteolytic bone disease, reduces tumor burden, and increases survival in murine models of multiple myeloma. Cancer Res. 2007 May 15;67(10):4572-7. Epub 2007 May 10. [Article]
  2. Nguyen AN, Stebbins EG, Henson M, O'Young G, Choi SJ, Quon D, Damm D, Reddy M, Ma JY, Haghnazari E, Kapoun AM, Medicherla S, Protter A, Schreiner GF, Kurihara N, Anderson J, Roodman GD, Navas TA, Higgins LS: Normalizing the bone marrow microenvironment with p38 inhibitor reduces multiple myeloma cell proliferation and adhesion and suppresses osteoclast formation. Exp Cell Res. 2006 Jun 10;312(10):1909-23. Epub 2006 Apr 4. [Article]
PubChem Compound
9871074
PubChem Substance
347827727
ChemSpider
8046764
BindingDB
50266947
ChEBI
90683
ChEMBL
CHEMBL514201
ZINC
ZINC000034001955
PDBe Ligand
469
PDB Entries
3hub / 3zsh

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns
2CompletedTreatmentBone marrow disorder / Bone Marrow Neoplasms / Hematologic Disease and Disorders / Myelodysplastic Syndrome1somestatusstop reasonjust information to hide
2CompletedTreatmentMultiple Myeloma (MM)2somestatusstop reasonjust information to hide
2CompletedTreatmentRheumatoid Arthritis2somestatusstop reasonjust information to hide
1CompletedTreatmentRheumatoid Arthritis1somestatusstop reasonjust information to hide

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage Forms
Not Available
Prices
Not Available
Patents
Not Available

Properties

State
Solid
Experimental Properties
Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.00586 mg/mLALOGPS
logP3.78ALOGPS
logP3.9Chemaxon
logS-4.9ALOGPS
pKa (Strongest Basic)6.49Chemaxon
Physiological Charge0Chemaxon
Hydrogen Acceptor Count4Chemaxon
Hydrogen Donor Count0Chemaxon
Polar Surface Area65.86 Å2Chemaxon
Rotatable Bond Count5Chemaxon
Refractivity139.25 m3·mol-1Chemaxon
Polarizability54.45 Å3Chemaxon
Number of Rings4Chemaxon
Bioavailability1Chemaxon
Rule of FiveNoChemaxon
Ghose FilterNoChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleNoChemaxon
Predicted ADMET Features
Not Available

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-03di-0010290000-19fb77c90073f7e5a0b0
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-03di-0001590000-4291342c1b18ea3b0bc9
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-01ox-3313940000-4df347aa7a2509451963
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-03kc-0912820000-00d20c3cbf404b519512
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-03k9-0001920000-e51276f094967973fc64
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-0bu0-2109300000-0db76eb4a2f78d9bfccf
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-226.37201
predicted
DeepCCS 1.0 (2019)
[M+H]+228.26743
predicted
DeepCCS 1.0 (2019)
[M+Na]+234.09518
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Modulator
General Function
Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as pro-inflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1 (PubMed:9687510, PubMed:9792677). RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery (PubMed:9687510, PubMed:9792677). On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2 (PubMed:11154262). MAPK14 interacts also with casein kinase II, leading to its activation through autophosphorylation and further phosphorylation of TP53/p53 (PubMed:10747897). In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. In a similar way, MAPK14 phosphorylates the ubiquitin ligase SIAH2, regulating its activity towards EGLN3 (PubMed:17003045). MAPK14 may also inhibit the lysosomal degradation pathway of autophagy by interfering with the intracellular trafficking of the transmembrane protein ATG9 (PubMed:19893488). Another function of MAPK14 is to regulate the endocytosis of membrane receptors by different mechanisms that impinge on the small GTPase RAB5A. In addition, clathrin-mediated EGFR internalization induced by inflammatory cytokines and UV irradiation depends on MAPK14-mediated phosphorylation of EGFR itself as well as of RAB5A effectors (PubMed:16932740). Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17 (PubMed:20188673). Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Another p38 MAPK substrate is FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A (PubMed:10330143, PubMed:9430721, PubMed:9858528). The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF-kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment. Phosphorylates CDC25B and CDC25C which is required for binding to 14-3-3 proteins and leads to initiation of a G2 delay after ultraviolet radiation (PubMed:11333986). Phosphorylates TIAR following DNA damage, releasing TIAR from GADD45A mRNA and preventing mRNA degradation (PubMed:20932473). The p38 MAPKs may also have kinase-independent roles, which are thought to be due to the binding to targets in the absence of phosphorylation. Protein O-Glc-N-acylation catalyzed by the OGT is regulated by MAPK14, and, although OGT does not seem to be phosphorylated by MAPK14, their interaction increases upon MAPK14 activation induced by glucose deprivation. This interaction may regulate OGT activity by recruiting it to specific targets such as neurofilament H, stimulating its O-Glc-N-acylation. Required in mid-fetal development for the growth of embryo-derived blood vessels in the labyrinth layer of the placenta. Also plays an essential role in developmental and stress-induced erythropoiesis, through regulation of EPO gene expression (PubMed:10943842). Isoform MXI2 activation is stimulated by mitogens and oxidative stress and only poorly phosphorylates ELK1 and ATF2. Isoform EXIP may play a role in the early onset of apoptosis. Phosphorylates S100A9 at 'Thr-113' (PubMed:15905572). Phosphorylates NLRP1 downstream of MAP3K20/ZAK in response to UV-B irradiation and ribosome collisions, promoting activation of the NLRP1 inflammasome and pyroptosis (PubMed:35857590)
Specific Function
ATP binding
Gene Name
MAPK14
Uniprot ID
Q16539
Uniprot Name
Mitogen-activated protein kinase 14
Molecular Weight
41292.885 Da
References
  1. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Cytokine that binds to TNFRSF1A/TNFR1 and TNFRSF1B/TNFBR. It is mainly secreted by macrophages and can induce cell death of certain tumor cell lines. It is potent pyrogen causing fever by direct action or by stimulation of interleukin-1 secretion and is implicated in the induction of cachexia, Under certain conditions it can stimulate cell proliferation and induce cell differentiation. Impairs regulatory T-cells (Treg) function in individuals with rheumatoid arthritis via FOXP3 dephosphorylation. Up-regulates the expression of protein phosphatase 1 (PP1), which dephosphorylates the key 'Ser-418' residue of FOXP3, thereby inactivating FOXP3 and rendering Treg cells functionally defective (PubMed:23396208). Key mediator of cell death in the anticancer action of BCG-stimulated neutrophils in combination with DIABLO/SMAC mimetic in the RT4v6 bladder cancer cell line (PubMed:16829952, PubMed:22517918, PubMed:23396208). Induces insulin resistance in adipocytes via inhibition of insulin-induced IRS1 tyrosine phosphorylation and insulin-induced glucose uptake. Induces GKAP42 protein degradation in adipocytes which is partially responsible for TNF-induced insulin resistance (By similarity). Plays a role in angiogenesis by inducing VEGF production synergistically with IL1B and IL6 (PubMed:12794819). Promotes osteoclastogenesis and therefore mediates bone resorption (By similarity)
Specific Function
cytokine activity
Gene Name
TNF
Uniprot ID
P01375
Uniprot Name
Tumor necrosis factor
Molecular Weight
25644.15 Da
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Potent pro-inflammatory cytokine (PubMed:10653850, PubMed:12794819, PubMed:28331908, PubMed:3920526). Initially discovered as the major endogenous pyrogen, induces prostaglandin synthesis, neutrophil influx and activation, T-cell activation and cytokine production, B-cell activation and antibody production, and fibroblast proliferation and collagen production (PubMed:3920526). Promotes Th17 differentiation of T-cells. Synergizes with IL12/interleukin-12 to induce IFNG synthesis from T-helper 1 (Th1) cells (PubMed:10653850). Plays a role in angiogenesis by inducing VEGF production synergistically with TNF and IL6 (PubMed:12794819). Involved in transduction of inflammation downstream of pyroptosis: its mature form is specifically released in the extracellular milieu by passing through the gasdermin-D (GSDMD) pore (PubMed:33377178, PubMed:33883744). Acts as a sensor of S.pyogenes infection in skin: cleaved and activated by pyogenes SpeB protease, leading to an inflammatory response that prevents bacterial growth during invasive skin infection (PubMed:28331908)
Specific Function
cytokine activity
Gene Name
IL1B
Uniprot ID
P01584
Uniprot Name
Interleukin-1 beta
Molecular Weight
30747.7 Da
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix
Specific Function
copper ion binding
Gene Name
MT-CO2
Uniprot ID
P00403
Uniprot Name
Cytochrome c oxidase subunit 2
Molecular Weight
25564.73 Da

Drug created at November 18, 2007 18:24 / Updated at August 26, 2024 19:22