Dihydro-2-thioxo-5-((5-(2-(trifluoromethyl)phenyl)-2-furanyl)methyl)-4,6(1H,5H)-pyrimidinedione
Star0
Identification
- Generic Name
- Dihydro-2-thioxo-5-((5-(2-(trifluoromethyl)phenyl)-2-furanyl)methyl)-4,6(1H,5H)-pyrimidinedione
- DrugBank Accession Number
- DB01496
- Background
Not Available
- Type
- Small Molecule
- Groups
- Experimental, Illicit
- Structure
- Weight
- Average: 368.33
Monoisotopic: 368.044247533 - Chemical Formula
- C16H11F3N2O3S
- Synonyms
- Not Available
Pharmacology
- Indication
Not Available
Reduce drug development failure ratesBuild, train, & validate machine-learning modelswith evidence-based and structured datasets.Build, train, & validate predictive machine-learning models with structured datasets.- Contraindications & Blackbox Warnings
- Prevent Adverse Drug Events TodayTap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.Avoid life-threatening adverse drug events with our Clinical API
- Pharmacodynamics
Not Available
- Mechanism of action
Target Actions Organism AGamma-aminobutyric acid receptor subunit alpha-1 potentiatorHumans AGamma-aminobutyric acid receptor subunit alpha-2 potentiatorHumans AGamma-aminobutyric acid receptor subunit alpha-3 potentiatorHumans AGamma-aminobutyric acid receptor subunit alpha-4 potentiatorHumans AGamma-aminobutyric acid receptor subunit alpha-5 potentiatorHumans AGamma-aminobutyric acid receptor subunit alpha-6 potentiatorHumans UNeuronal acetylcholine receptor subunit alpha-4 antagonistHumans UNeuronal acetylcholine receptor subunit alpha-7 antagonistHumans UGlutamate receptor 2 antagonistHumans UGlutamate receptor ionotropic, kainate 2 antagonistHumans - Absorption
Not Available
- Volume of distribution
Not Available
- Protein binding
Not Available
- Metabolism
- Not Available
- Route of elimination
Not Available
- Half-life
Not Available
- Clearance
Not Available
- Adverse Effects
- Improve decision support & research outcomesWith structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!Improve decision support & research outcomes with our structured adverse effects data.
- Toxicity
Not Available
- Pathways
- Not Available
- Pharmacogenomic Effects/ADRs
- Not Available
Interactions
- Drug Interactions
- This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
Drug Interaction Integrate drug-drug
interactions in your softwareAclidinium The risk or severity of adverse effects can be increased when Dihydro-2-thioxo-5-((5-(2-(trifluoromethyl)phenyl)-2-furanyl)methyl)-4,6(1H,5H)-pyrimidinedione is combined with Aclidinium. Alfentanil The risk or severity of adverse effects can be increased when Dihydro-2-thioxo-5-((5-(2-(trifluoromethyl)phenyl)-2-furanyl)methyl)-4,6(1H,5H)-pyrimidinedione is combined with Alfentanil. Alloin The therapeutic efficacy of Alloin can be decreased when used in combination with Dihydro-2-thioxo-5-((5-(2-(trifluoromethyl)phenyl)-2-furanyl)methyl)-4,6(1H,5H)-pyrimidinedione. Amantadine The risk or severity of adverse effects can be increased when Amantadine is combined with Dihydro-2-thioxo-5-((5-(2-(trifluoromethyl)phenyl)-2-furanyl)methyl)-4,6(1H,5H)-pyrimidinedione. Ambenonium The therapeutic efficacy of Dihydro-2-thioxo-5-((5-(2-(trifluoromethyl)phenyl)-2-furanyl)methyl)-4,6(1H,5H)-pyrimidinedione can be decreased when used in combination with Ambenonium. Amitriptyline The risk or severity of adverse effects can be increased when Dihydro-2-thioxo-5-((5-(2-(trifluoromethyl)phenyl)-2-furanyl)methyl)-4,6(1H,5H)-pyrimidinedione is combined with Amitriptyline. Amitriptylinoxide The risk or severity of adverse effects can be increased when Dihydro-2-thioxo-5-((5-(2-(trifluoromethyl)phenyl)-2-furanyl)methyl)-4,6(1H,5H)-pyrimidinedione is combined with Amitriptylinoxide. Amobarbital The risk or severity of adverse effects can be increased when Amobarbital is combined with Dihydro-2-thioxo-5-((5-(2-(trifluoromethyl)phenyl)-2-furanyl)methyl)-4,6(1H,5H)-pyrimidinedione. Amoxapine The risk or severity of adverse effects can be increased when Dihydro-2-thioxo-5-((5-(2-(trifluoromethyl)phenyl)-2-furanyl)methyl)-4,6(1H,5H)-pyrimidinedione is combined with Amoxapine. Anisotropine methylbromide The risk or severity of adverse effects can be increased when Anisotropine methylbromide is combined with Dihydro-2-thioxo-5-((5-(2-(trifluoromethyl)phenyl)-2-furanyl)methyl)-4,6(1H,5H)-pyrimidinedione. Identify potential medication risksEasily compare up to 40 drugs with our drug interaction checker.Get severity rating, description, and management advice.Learn more - Food Interactions
- Not Available
Categories
- Drug Categories
- Chemical TaxonomyProvided by Classyfire
- Description
- This compound belongs to the class of organic compounds known as trifluoromethylbenzenes. These are organofluorine compounds that contain a benzene ring substituted with one or more trifluoromethyl groups.
- Kingdom
- Organic compounds
- Super Class
- Benzenoids
- Class
- Benzene and substituted derivatives
- Sub Class
- Trifluoromethylbenzenes
- Direct Parent
- Trifluoromethylbenzenes
- Alternative Parents
- Thiobarbituric acid derivatives / Diazinanes / 1,3-dicarbonyl compounds / Heteroaromatic compounds / Furans / Thioureas / Oxacyclic compounds / Carboxylic acids and derivatives / Azacyclic compounds / Organopnictogen compounds show 5 more
- Substituents
- 1,3-diazinane / 1,3-dicarbonyl compound / Alkyl fluoride / Alkyl halide / Aromatic heteromonocyclic compound / Azacycle / Carbonyl group / Carboxylic acid derivative / Furan / Heteroaromatic compound show 15 more
- Molecular Framework
- Aromatic heteromonocyclic compounds
- External Descriptors
- Not Available
- Affected organisms
- Not Available
Chemical Identifiers
- UNII
- R1JI58032B
- CAS number
- 959343-20-5
- InChI Key
- DNZPLHRZXUJATK-UHFFFAOYSA-N
- InChI
- InChI=1S/C16H11F3N2O3S/c17-16(18,19)11-4-2-1-3-9(11)12-6-5-8(24-12)7-10-13(22)20-15(25)21-14(10)23/h1-6,10H,7H2,(H2,20,21,22,23,25)
- IUPAC Name
- 2-sulfanylidene-5-({5-[2-(trifluoromethyl)phenyl]furan-2-yl}methyl)-1,3-diazinane-4,6-dione
- SMILES
- FC(F)(F)C1=CC=CC=C1C1=CC=C(CC2C(=O)NC(=S)NC2=O)O1
References
- Synthesis Reference
Akinori Fujita, "Phenylurethane compounds and methods for producing same, asymmetric urea compounds and methods for producing same, barbituric acid derivative, and diazo thermal recording material containing the derivative." U.S. Patent US20020161225, issued October 31, 2002.
US20020161225- General References
- Not Available
- External Links
- PubChem Compound
- 3003157
- PubChem Substance
- 46507405
- ChemSpider
- 2273815
- ZINC
- ZINC000012500927
Clinical Trials
Pharmacoeconomics
- Manufacturers
- Not Available
- Packagers
- Not Available
- Dosage Forms
- Not Available
- Prices
- Not Available
- Patents
- Not Available
Properties
- State
- Solid
- Experimental Properties
- Not Available
- Predicted Properties
Property Value Source Water Solubility 0.0206 mg/mL ALOGPS logP 3.19 ALOGPS logP 3.09 Chemaxon logS -4.2 ALOGPS pKa (Strongest Acidic) 5.11 Chemaxon pKa (Strongest Basic) -2.9 Chemaxon Physiological Charge -1 Chemaxon Hydrogen Acceptor Count 2 Chemaxon Hydrogen Donor Count 2 Chemaxon Polar Surface Area 71.34 Å2 Chemaxon Rotatable Bond Count 4 Chemaxon Refractivity 86.77 m3·mol-1 Chemaxon Polarizability 31.65 Å3 Chemaxon Number of Rings 3 Chemaxon Bioavailability 1 Chemaxon Rule of Five Yes Chemaxon Ghose Filter Yes Chemaxon Veber's Rule No Chemaxon MDDR-like Rule No Chemaxon - Predicted ADMET Features
Property Value Probability Human Intestinal Absorption + 0.9027 Blood Brain Barrier + 0.9146 Caco-2 permeable - 0.5855 P-glycoprotein substrate Non-substrate 0.7974 P-glycoprotein inhibitor I Non-inhibitor 0.5146 P-glycoprotein inhibitor II Non-inhibitor 0.9087 Renal organic cation transporter Non-inhibitor 0.8538 CYP450 2C9 substrate Non-substrate 0.7901 CYP450 2D6 substrate Non-substrate 0.8267 CYP450 3A4 substrate Non-substrate 0.6502 CYP450 1A2 substrate Non-inhibitor 0.5 CYP450 2C9 inhibitor Inhibitor 0.6386 CYP450 2D6 inhibitor Non-inhibitor 0.8843 CYP450 2C19 inhibitor Inhibitor 0.576 CYP450 3A4 inhibitor Inhibitor 0.5624 CYP450 inhibitory promiscuity High CYP Inhibitory Promiscuity 0.7148 Ames test Non AMES toxic 0.6382 Carcinogenicity Non-carcinogens 0.7788 Biodegradation Not ready biodegradable 1.0 Rat acute toxicity 2.4912 LD50, mol/kg Not applicable hERG inhibition (predictor I) Weak inhibitor 0.9975 hERG inhibition (predictor II) Non-inhibitor 0.7378
Spectra
- Mass Spec (NIST)
- Not Available
- Spectra
Spectrum Spectrum Type Splash Key Predicted MS/MS Spectrum - 10V, Positive (Annotated) Predicted LC-MS/MS Not Available Predicted MS/MS Spectrum - 20V, Positive (Annotated) Predicted LC-MS/MS Not Available Predicted MS/MS Spectrum - 40V, Positive (Annotated) Predicted LC-MS/MS Not Available Predicted MS/MS Spectrum - 10V, Negative (Annotated) Predicted LC-MS/MS Not Available Predicted MS/MS Spectrum - 20V, Negative (Annotated) Predicted LC-MS/MS Not Available Predicted MS/MS Spectrum - 40V, Negative (Annotated) Predicted LC-MS/MS Not Available
Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock newinsights and accelerate drug research.
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Potentiator
- General Function
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function
- Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine...
- Gene Name
- GABRA1
- Uniprot ID
- P14867
- Uniprot Name
- Gamma-aminobutyric acid receptor subunit alpha-1
- Molecular Weight
- 51801.395 Da
References
- Whiting PJ: The GABAA receptor gene family: new opportunities for drug development. Curr Opin Drug Discov Devel. 2003 Sep;6(5):648-57. [Article]
- Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
- Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
- Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Potentiator
- General Function
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name
- GABRA2
- Uniprot ID
- P47869
- Uniprot Name
- Gamma-aminobutyric acid receptor subunit alpha-2
- Molecular Weight
- 51325.85 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Potentiator
- General Function
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name
- GABRA3
- Uniprot ID
- P34903
- Uniprot Name
- Gamma-aminobutyric acid receptor subunit alpha-3
- Molecular Weight
- 55164.055 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Potentiator
- General Function
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name
- GABRA4
- Uniprot ID
- P48169
- Uniprot Name
- Gamma-aminobutyric acid receptor subunit alpha-4
- Molecular Weight
- 61622.645 Da
References
- Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Potentiator
- General Function
- Transporter activity
- Specific Function
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name
- GABRA5
- Uniprot ID
- P31644
- Uniprot Name
- Gamma-aminobutyric acid receptor subunit alpha-5
- Molecular Weight
- 52145.645 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Potentiator
- General Function
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name
- GABRA6
- Uniprot ID
- Q16445
- Uniprot Name
- Gamma-aminobutyric acid receptor subunit alpha-6
- Molecular Weight
- 51023.69 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- Ligand-gated ion channel activity
- Specific Function
- After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeabl...
- Gene Name
- CHRNA4
- Uniprot ID
- P43681
- Uniprot Name
- Neuronal acetylcholine receptor subunit alpha-4
- Molecular Weight
- 69956.47 Da
References
- Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
- Arias HR, Bhumireddy P: Anesthetics as chemical tools to study the structure and function of nicotinic acetylcholine receptors. Curr Protein Pept Sci. 2005 Oct;6(5):451-72. [Article]
- Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- Toxic substance binding
- Specific Function
- After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The cha...
- Gene Name
- CHRNA7
- Uniprot ID
- P36544
- Uniprot Name
- Neuronal acetylcholine receptor subunit alpha-7
- Molecular Weight
- 56448.925 Da
References
- Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
- Arias HR, Bhumireddy P: Anesthetics as chemical tools to study the structure and function of nicotinic acetylcholine receptors. Curr Protein Pept Sci. 2005 Oct;6(5):451-72. [Article]
- Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]
9. DetailsGlutamate receptor 2
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- Ionotropic glutamate receptor activity
- Specific Function
- Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory ne...
- Gene Name
- GRIA2
- Uniprot ID
- P42262
- Uniprot Name
- Glutamate receptor 2
- Molecular Weight
- 98820.32 Da
References
- Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
- Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]
10. DetailsGlutamate receptor ionotropic, kainate 2
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- Kainate selective glutamate receptor activity
- Specific Function
- Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a co...
- Gene Name
- GRIK2
- Uniprot ID
- Q13002
- Uniprot Name
- Glutamate receptor ionotropic, kainate 2
- Molecular Weight
- 102582.475 Da
References
- Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
- Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]
Drug created at July 31, 2007 13:09 / Updated at June 12, 2020 16:51