Cyclin-dependent-like kinase 5


Cyclin-dependent-like kinase 5
  • CDKN5
  • Cell division protein kinase 5
  • Serine/threonine-protein kinase PSSALRE
  • Tau protein kinase II catalytic subunit
  • TPKII catalytic subunit
Gene Name
Amino acid sequence
>lcl|BSEQ0001774|Cyclin-dependent-like kinase 5
Number of residues
Molecular Weight
Theoretical pI
GO Classification
acetylcholine receptor activator activity / ATP binding / cyclin-dependent protein serine/threonine kinase activity / ErbB-2 class receptor binding / ErbB-3 class receptor binding / kinase activity / protein kinase activity / protein serine/threonine kinase activity / tau-protein kinase activity
axon extension / axon guidance / behavioral response to cocaine / blood coagulation / calcium ion import / cell cycle / cell division / cell proliferation / cell-matrix adhesion / central nervous system neuron development / cerebellar cortex formation / corpus callosum development / cortical actin cytoskeleton organization / dendrite morphogenesis / excitatory postsynaptic potential / hippocampus development / intracellular protein transport / layer formation in cerebral cortex / motor neuron axon guidance / negative regulation of axon extension / negative regulation of cell cycle / negative regulation of neuron death / negative regulation of protein export from nucleus / negative regulation of protein ubiquitination / negative regulation of proteolysis / negative regulation of synaptic plasticity / negative regulation of transcription, DNA-templated / neuron apoptotic process / neuron differentiation / neuron migration / neuron projection development / nucleocytoplasmic transport / oligodendrocyte differentiation / peptidyl-serine phosphorylation / peptidyl-threonine phosphorylation / phosphorylation / positive regulation of actin cytoskeleton reorganization / positive regulation of calcium ion-dependent exocytosis / positive regulation of neuron apoptotic process / positive regulation of protein binding / positive regulation of protein kinase activity / positive regulation of protein targeting to membrane / protein autophosphorylation / protein localization to synapse / receptor catabolic process / receptor clustering / regulated secretory pathway / regulation of apoptotic process / regulation of cell cycle arrest / regulation of cell migration / regulation of dendritic spine morphogenesis / regulation of synaptic plasticity / regulation of synaptic vesicle recycling / rhythmic process / Schwann cell development / sensory perception of pain / serine phosphorylation of STAT3 protein / skeletal muscle tissue development / synapse assembly / synaptic transmission / synaptic transmission, dopaminergic / synaptic transmission, glutamatergic / synaptic vesicle endocytosis / synaptic vesicle exocytosis / visual learning
axon / cell junction / cyclin-dependent protein kinase 5 holoenzyme complex / cytoplasm / cytoskeleton / cytosol / dendrite / filopodium / growth cone / lamellipodium / membrane / neuromuscular junction / neuronal cell body / nucleus / perikaryon / plasma membrane / postsynaptic density / postsynaptic membrane
General Function
Tau-protein kinase activity
Specific Function
Proline-directed serine/threonine-protein kinase essential for neuronal cell cycle arrest and differentiation and may be involved in apoptotic cell death in neuronal diseases by triggering abortive cell cycle re-entry. Interacts with D1 and D3-type G1 cyclins. Phosphorylates SRC, NOS3, VIM/vimentin, p35/CDK5R1, MEF2A, SIPA1L1, SH3GLB1, PXN, PAK1, MCAM/MUC18, SEPT5, SYN1, DNM1, AMPH, SYNJ1, CDK16, RAC1, RHOA, CDC42, TONEBP/NFAT5, MAPT/TAU, MAP1B, histone H1, p53/TP53, HDAC1, APEX1, PTK2/FAK1, huntingtin/HTT, ATM, MAP2, NEFH and NEFM. Regulates several neuronal development and physiological processes including neuronal survival, migration and differentiation, axonal and neurite growth, synaptogenesis, oligodendrocyte differentiation, synaptic plasticity and neurotransmission, by phosphorylating key proteins. Activated by interaction with CDK5R1 (p35) and CDK5R2 (p39), especially in post-mitotic neurons, and promotes CDK5R1 (p35) expression in an autostimulation loop. Phosphorylates many downstream substrates such as Rho and Ras family small GTPases (e.g. PAK1, RAC1, RHOA, CDC42) or microtubule-binding proteins (e.g. MAPT/TAU, MAP2, MAP1B), and modulates actin dynamics to regulate neurite growth and/or spine morphogenesis. Phosphorylates also exocytosis associated proteins such as MCAM/MUC18, SEPT5, SYN1, and CDK16/PCTAIRE1 as well as endocytosis associated proteins such as DNM1, AMPH and SYNJ1 at synaptic terminals. In the mature central nervous system (CNS), regulates neurotransmitter movements by phosphorylating substrates associated with neurotransmitter release and synapse plasticity; synaptic vesicle exocytosis, vesicles fusion with the presynaptic membrane, and endocytosis. Promotes cell survival by activating anti-apoptotic proteins BCL2 and STAT3, and negatively regulating of JNK3/MAPK10 activity. Phosphorylation of p53/TP53 in response to genotoxic and oxidative stresses enhances its stabilization by preventing ubiquitin ligase-mediated proteasomal degradation, and induces transactivation of p53/TP53 target genes, thus regulating apoptosis. Phosphorylation of p35/CDK5R1 enhances its stabilization by preventing calpain-mediated proteolysis producing p25/CDK5R1 and avoiding ubiquitin ligase-mediated proteasomal degradation. During aberrant cell-cycle activity and DNA damage, p25/CDK5 activity elicits cell-cycle activity and double-strand DNA breaks that precedes neuronal death by deregulating HDAC1. DNA damage triggered phosphorylation of huntingtin/HTT in nuclei of neurons protects neurons against polyglutamine expansion as well as DNA damage mediated toxicity. Phosphorylation of PXN reduces its interaction with PTK2/FAK1 in matrix-cell focal adhesions (MCFA) during oligodendrocytes (OLs) differentiation. Negative regulator of Wnt/beta-catenin signaling pathway. Activator of the GAIT (IFN-gamma-activated inhibitor of translation) pathway, which suppresses expression of a post-transcriptional regulon of proinflammatory genes in myeloid cells; phosphorylates the linker domain of glutamyl-prolyl tRNA synthetase (EPRS) in a IFN-gamma-dependent manner, the initial event in assembly of the GAIT complex. Phosphorylation of SH3GLB1 is required for autophagy induction in starved neurons. Phosphorylation of TONEBP/NFAT5 in response to osmotic stress mediates its rapid nuclear localization. MEF2 is inactivated by phosphorylation in nucleus in response to neurotoxin, thus leading to neuronal apoptosis. APEX1 AP-endodeoxyribonuclease is repressed by phosphorylation, resulting in accumulation of DNA damage and contributing to neuronal death. NOS3 phosphorylation down regulates NOS3-derived nitrite (NO) levels. SRC phosphorylation mediates its ubiquitin-dependent degradation and thus leads to cytoskeletal reorganization. May regulate endothelial cell migration and angiogenesis via the modulation of lamellipodia formation. Involved in dendritic spine morphogenesis by mediating the EFNA1-EPHA4 signaling. The complex p35/CDK5 participates in the regulation of the circadian clock by modulating the function of CLOCK protein: phosphorylates CLOCK at 'Thr-451' and 'Thr-461' and regulates the transcriptional activity of the CLOCK-ARNTL/BMAL1 heterodimer in association with altered stability and subcellular distribution.
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Gene sequence
>lcl|BSEQ0020492|Cyclin-dependent-like kinase 5 (CDK5)
Chromosome Location
External Identifiers
UniProtKB IDQ00535
UniProtKB Entry NameCDK5_HUMAN
GenBank Protein ID36621
GenBank Gene IDX66364
GenAtlas IDCDK5
General References
  1. Meyerson M, Enders GH, Wu CL, Su LK, Gorka C, Nelson C, Harlow E, Tsai LH: A family of human cdc2-related protein kinases. EMBO J. 1992 Aug;11(8):2909-17. [Article]
  2. Li Q, Liu X, Zhang M, Ye G, Qiao Q, Ling Y, Wu Y, Zhang Y, Yu L: Characterization of a novel human CDK5 splicing variant that inhibits Wnt/beta-catenin signaling. Mol Biol Rep. 2010 Jun;37(5):2415-21. doi: 10.1007/s11033-009-9752-7. Epub 2009 Aug 20. [Article]
  3. Hillier LW, Fulton RS, Fulton LA, Graves TA, Pepin KH, Wagner-McPherson C, Layman D, Maas J, Jaeger S, Walker R, Wylie K, Sekhon M, Becker MC, O'Laughlin MD, Schaller ME, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Cordes M, Du H, Sun H, Edwards J, Bradshaw-Cordum H, Ali J, Andrews S, Isak A, Vanbrunt A, Nguyen C, Du F, Lamar B, Courtney L, Kalicki J, Ozersky P, Bielicki L, Scott K, Holmes A, Harkins R, Harris A, Strong CM, Hou S, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Leonard S, Rohlfing T, Rock SM, Tin-Wollam AM, Abbott A, Minx P, Maupin R, Strowmatt C, Latreille P, Miller N, Johnson D, Murray J, Woessner JP, Wendl MC, Yang SP, Schultz BR, Wallis JW, Spieth J, Bieri TA, Nelson JO, Berkowicz N, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Bedell JA, Mardis ER, Clifton SW, Chissoe SL, Marra MA, Raymond C, Haugen E, Gillett W, Zhou Y, James R, Phelps K, Iadanoto S, Bubb K, Simms E, Levy R, Clendenning J, Kaul R, Kent WJ, Furey TS, Baertsch RA, Brent MR, Keibler E, Flicek P, Bork P, Suyama M, Bailey JA, Portnoy ME, Torrents D, Chinwalla AT, Gish WR, Eddy SR, McPherson JD, Olson MV, Eichler EE, Green ED, Waterston RH, Wilson RK: The DNA sequence of human chromosome 7. Nature. 2003 Jul 10;424(6945):157-64. [Article]
  4. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [Article]
  5. Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N, Inagaki M, Delcros JG, Moulinoux JP: Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem. 1997 Jan 15;243(1-2):527-36. [Article]
  6. Paglini G, Pigino G, Kunda P, Morfini G, Maccioni R, Quiroga S, Ferreira A, Caceres A: Evidence for the participation of the neuron-specific CDK5 activator P35 during laminin-enhanced axonal growth. J Neurosci. 1998 Dec 1;18(23):9858-69. [Article]
  7. Sharma P, Sharma M, Amin ND, Albers RW, Pant HC: Regulation of cyclin-dependent kinase 5 catalytic activity by phosphorylation. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11156-60. [Article]
  8. Kerokoski P, Suuronen T, Salminen A, Soininen H, Pirttila T: Influence of phosphorylation of p35, an activator of cyclin-dependent kinase 5 (cdk5), on the proteolysis of p35. Brain Res Mol Brain Res. 2002 Oct 15;106(1-2):50-6. [Article]
  9. Honma N, Asada A, Takeshita S, Enomoto M, Yamakawa E, Tsutsumi K, Saito T, Satoh T, Itoh H, Kaziro Y, Kishimoto T, Hisanaga S: Apoptosis-associated tyrosine kinase is a Cdk5 activator p35 binding protein. Biochem Biophys Res Commun. 2003 Oct 17;310(2):398-404. [Article]
  10. Gong X, Tang X, Wiedmann M, Wang X, Peng J, Zheng D, Blair LA, Marshall J, Mao Z: Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron. 2003 Apr 10;38(1):33-46. [Article]
  11. Zhu YS, Saito T, Asada A, Maekawa S, Hisanaga S: Activation of latent cyclin-dependent kinase 5 (Cdk5)-p35 complexes by membrane dissociation. J Neurochem. 2005 Sep;94(6):1535-45. Epub 2005 Jun 30. [Article]
  12. Kamei H, Saito T, Ozawa M, Fujita Y, Asada A, Bibb JA, Saido TC, Sorimachi H, Hisanaga S: Suppression of calpain-dependent cleavage of the CDK5 activator p35 to p25 by site-specific phosphorylation. J Biol Chem. 2007 Jan 19;282(3):1687-94. Epub 2006 Nov 22. [Article]
  13. Munoz JP, Huichalaf CH, Orellana D, Maccioni RB: cdk5 modulates beta- and delta-catenin/Pin1 interactions in neuronal cells. J Cell Biochem. 2007 Feb 15;100(3):738-49. [Article]
  14. Lee JH, Kim HS, Lee SJ, Kim KT: Stabilization and activation of p53 induced by Cdk5 contributes to neuronal cell death. J Cell Sci. 2007 Jul 1;120(Pt 13):2259-71. [Article]
  15. Miyamoto Y, Yamauchi J, Chan JR, Okada A, Tomooka Y, Hisanaga S, Tanoue A: Cdk5 regulates differentiation of oligodendrocyte precursor cells through the direct phosphorylation of paxillin. J Cell Sci. 2007 Dec 15;120(Pt 24):4355-66. Epub 2007 Nov 27. [Article]
  16. Anne SL, Saudou F, Humbert S: Phosphorylation of huntingtin by cyclin-dependent kinase 5 is induced by DNA damage and regulates wild-type and mutant huntingtin toxicity in neurons. J Neurosci. 2007 Jul 4;27(27):7318-28. [Article]
  17. Sato K, Zhu YS, Saito T, Yotsumoto K, Asada A, Hasegawa M, Hisanaga S: Regulation of membrane association and kinase activity of Cdk5-p35 by phosphorylation of p35. J Neurosci Res. 2007 Nov 1;85(14):3071-8. [Article]
  18. Fu WY, Chen Y, Sahin M, Zhao XS, Shi L, Bikoff JB, Lai KO, Yung WH, Fu AK, Greenberg ME, Ip NY: Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci. 2007 Jan;10(1):67-76. Epub 2006 Dec 3. [Article]
  19. Asada A, Yamamoto N, Gohda M, Saito T, Hayashi N, Hisanaga S: Myristoylation of p39 and p35 is a determinant of cytoplasmic or nuclear localization of active cyclin-dependent kinase 5 complexes. J Neurochem. 2008 Aug;106(3):1325-36. doi: 10.1111/j.1471-4159.2008.05500.x. Epub 2008 May 26. [Article]
  20. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R, Greff Z, Keri G, Stemmann O, Mann M: Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell. 2008 Aug 8;31(3):438-48. doi: 10.1016/j.molcel.2008.07.007. [Article]
  21. Kim D, Frank CL, Dobbin MM, Tsunemoto RK, Tu W, Peng PL, Guan JS, Lee BH, Moy LY, Giusti P, Broodie N, Mazitschek R, Delalle I, Haggarty SJ, Neve RL, Lu Y, Tsai LH: Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron. 2008 Dec 10;60(5):803-17. doi: 10.1016/j.neuron.2008.10.015. [Article]
  22. Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S: Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem. 2009 Jun 1;81(11):4493-501. doi: 10.1021/ac9004309. [Article]
  23. Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Keri G, Mann M, Daub H: Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics. 2009 Jul;8(7):1751-64. doi: 10.1074/mcp.M800588-MCP200. Epub 2009 Apr 15. [Article]
  24. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009 Aug 14;325(5942):834-40. doi: 10.1126/science.1175371. Epub 2009 Jul 16. [Article]
  25. Liebl J, Weitensteiner SB, Vereb G, Takacs L, Furst R, Vollmar AM, Zahler S: Cyclin-dependent kinase 5 regulates endothelial cell migration and angiogenesis. J Biol Chem. 2010 Nov 12;285(46):35932-43. doi: 10.1074/jbc.M110.126177. Epub 2010 Sep 7. [Article]
  26. Lee CH, Wei YW, Huang YT, Lin YT, Lee YC, Lee KH, Lu PJ: CDK5 phosphorylates eNOS at Ser-113 and regulates NO production. J Cell Biochem. 2010 May;110(1):112-7. doi: 10.1002/jcb.22515. [Article]
  27. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [Article]
  28. Jain P, Flaherty PT, Yi S, Chopra I, Bleasdell G, Lipay J, Ferandin Y, Meijer L, Madura JD: Design, synthesis, and testing of an 6-O-linked series of benzimidazole based inhibitors of CDK5/p25. Bioorg Med Chem. 2011 Jan 1;19(1):359-73. doi: 10.1016/j.bmc.2010.11.022. Epub 2010 Dec 6. [Article]
  29. Pan Q, Qiao F, Gao C, Norman B, Optican L, Zelenka PS: Cdk5 targets active Src for ubiquitin-dependent degradation by phosphorylating Src(S75). Cell Mol Life Sci. 2011 Oct;68(20):3425-36. doi: 10.1007/s00018-011-0638-1. Epub 2011 Mar 27. [Article]
  30. Lee KY, Liu L, Jin Y, Fu SB, Rosales JL: Cdk5 mediates vimentin Ser56 phosphorylation during GTP-induced secretion by neutrophils. J Cell Physiol. 2012 Feb;227(2):739-50. doi: 10.1002/jcp.22782. [Article]
  31. Sun KH, Chang KH, Clawson S, Ghosh S, Mirzaei H, Regnier F, Shah K: Glutathione-S-transferase P1 is a critical regulator of Cdk5 kinase activity. J Neurochem. 2011 Sep;118(5):902-14. doi: 10.1111/j.1471-4159.2011.07343.x. Epub 2011 Jul 8. [Article]
  32. Gallazzini M, Heussler GE, Kunin M, Izumi Y, Burg MB, Ferraris JD: High NaCl-induced activation of CDK5 increases phosphorylation of the osmoprotective transcription factor TonEBP/OREBP at threonine 135, which contributes to its rapid nuclear localization. Mol Biol Cell. 2011 Mar 1;22(5):703-14. doi: 10.1091/mbc.E10-08-0681. Epub 2011 Jan 5. [Article]
  33. Wong AS, Lee RH, Cheung AY, Yeung PK, Chung SK, Cheung ZH, Ip NY: Cdk5-mediated phosphorylation of endophilin B1 is required for induced autophagy in models of Parkinson's disease. Nat Cell Biol. 2011 May;13(5):568-79. doi: 10.1038/ncb2217. Epub 2011 Apr 17. [Article]
  34. Arif A, Jia J, Moodt RA, DiCorleto PE, Fox PL: Phosphorylation of glutamyl-prolyl tRNA synthetase by cyclin-dependent kinase 5 dictates transcript-selective translational control. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1415-20. doi: 10.1073/pnas.1011275108. Epub 2011 Jan 10. [Article]
  35. Dhavan R, Tsai LH: A decade of CDK5. Nat Rev Mol Cell Biol. 2001 Oct;2(10):749-59. [Article]
  36. Malumbres M, Barbacid M: Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009 Mar;9(3):153-66. doi: 10.1038/nrc2602. [Article]
  37. Jessberger S, Gage FH, Eisch AJ, Lagace DC: Making a neuron: Cdk5 in embryonic and adult neurogenesis. Trends Neurosci. 2009 Nov;32(11):575-82. doi: 10.1016/j.tins.2009.07.002. Epub 2009 Sep 24. [Article]
  38. Lalioti V, Pulido D, Sandoval IV: Cdk5, the multifunctional surveyor. Cell Cycle. 2010 Jan 15;9(2):284-311. Epub 2010 Jan 28. [Article]
  39. Hisanaga S, Endo R: Regulation and role of cyclin-dependent kinase activity in neuronal survival and death. J Neurochem. 2010 Dec;115(6):1309-21. doi: 10.1111/j.1471-4159.2010.07050.x. Epub 2010 Nov 4. [Article]
  40. Zhang J, Herrup K: Nucleocytoplasmic Cdk5 is involved in neuronal cell cycle and death in post-mitotic neurons. Cell Cycle. 2011 Apr 15;10(8):1208-14. Epub 2011 Apr 15. [Article]
  41. Zhu J, Li W, Mao Z: Cdk5: mediator of neuronal development, death and the response to DNA damage. Mech Ageing Dev. 2011 Aug;132(8-9):389-94. doi: 10.1016/j.mad.2011.04.011. Epub 2011 May 11. [Article]
  42. Lopes JP, Agostinho P: Cdk5: multitasking between physiological and pathological conditions. Prog Neurobiol. 2011 Jun;94(1):49-63. doi: 10.1016/j.pneurobio.2011.03.006. Epub 2011 Apr 5. [Article]
  43. Kwak Y, Jeong J, Lee S, Park YU, Lee SA, Han DH, Kim JH, Ohshima T, Mikoshiba K, Suh YH, Cho S, Park SK: Cyclin-dependent kinase 5 (Cdk5) regulates the function of CLOCK protein by direct phosphorylation. J Biol Chem. 2013 Dec 27;288(52):36878-89. doi: 10.1074/jbc.M113.494856. Epub 2013 Nov 14. [Article]
  44. Magen D, Ofir A, Berger L, Goldsher D, Eran A, Katib N, Nijem Y, Vlodavsky E, Tzur S, Behar DM, Fellig Y, Mandel H: Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with a loss-of-function mutation in CDK5. Hum Genet. 2015 Mar;134(3):305-14. doi: 10.1007/s00439-014-1522-5. Epub 2015 Jan 6. [Article]
  45. Tarricone C, Dhavan R, Peng J, Areces LB, Tsai LH, Musacchio A: Structure and regulation of the CDK5-p25(nck5a) complex. Mol Cell. 2001 Sep;8(3):657-69. [Article]
  46. Ahn JS, Radhakrishnan ML, Mapelli M, Choi S, Tidor B, Cuny GD, Musacchio A, Yeh LA, Kosik KS: Defining Cdk5 ligand chemical space with small molecule inhibitors of tau phosphorylation. Chem Biol. 2005 Jul;12(7):811-23. [Article]
  47. Mapelli M, Massimiliano L, Crovace C, Seeliger MA, Tsai LH, Meijer L, Musacchio A: Mechanism of CDK5/p25 binding by CDK inhibitors. J Med Chem. 2005 Feb 10;48(3):671-9. [Article]
  48. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O'Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR: Patterns of somatic mutation in human cancer genomes. Nature. 2007 Mar 8;446(7132):153-8. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB03496Alvocidibexperimental, investigationalunknownDetails
DB15442Trilaciclibapproved, investigationalnoinhibitorDetails