Alvocidib

Identification

Generic Name
Alvocidib
DrugBank Accession Number
DB03496
Background

Alvocidib is a synthetic flavonoid based on an extract from an Indian plant for the potential treatment of cancer. It works by inhibiting cyclin-dependent kinases, arresting cell division and causing apoptosis in non-small lung cancer cells.

Type
Small Molecule
Groups
Experimental, Investigational
Structure
Weight
Average: 401.84
Monoisotopic: 401.103000462
Chemical Formula
C21H20ClNO5
Synonyms
  • Alvocidib
  • Alvocidib freebase
  • Flavopiridol
External IDs
  • L86-8275

Pharmacology

Indication

Investigated for use/treatment in esophageal cancer, leukemia (lymphoid), lung cancer, liver cancer, and lymphoma (unspecified).

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Not Available

Mechanism of action

Inhibits cyclin-dependent kinases, arresting cell division and causing apoptosis in non-small lung cancer cells.

TargetActionsOrganism
AGlycogen phosphorylase, muscle form
inhibitor
Humans
ACyclin-dependent kinase 9
inhibitor
Humans
UGlycogen phosphorylase, brain formNot AvailableHumans
UGlycogen phosphorylase, liver formNot AvailableHumans
UCyclin-dependent kinase 7Not AvailableHumans
UCyclin-dependent kinase 5Not AvailableHumans
UCyclin-dependent kinase 1Not AvailableHumans
UCyclin-dependent kinase 6Not AvailableHumans
UEpidermal growth factor receptorNot AvailableHumans
UCyclin-dependent kinase 4Not AvailableHumans
UCyclin-dependent kinase 8Not AvailableHumans
UCyclin-dependent kinase 2
inhibitor
Humans
Absorption

Not Available

Volume of distribution

Not Available

Protein binding

Not Available

Metabolism
Not Available
Route of elimination

Not Available

Half-life

Not Available

Clearance

Not Available

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

Not Available

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
AbemaciclibAbemaciclib may decrease the excretion rate of Alvocidib which could result in a higher serum level.
AdenineThe metabolism of Alvocidib can be decreased when combined with Adenine.
AfatinibAfatinib may decrease the excretion rate of Alvocidib which could result in a higher serum level.
AlectinibAlectinib may decrease the excretion rate of Alvocidib which could result in a higher serum level.
AmbroxolThe risk or severity of methemoglobinemia can be increased when Alvocidib is combined with Ambroxol.
Food Interactions
Not Available

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
Product Ingredients
IngredientUNIICASInChI Key
Alvocidib hydrochlorideD48MS3A6N9131740-09-5LGMSNQNWOCSPIK-LWHGMNCYSA-N

Categories

Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as flavones. These are flavonoids with a structure based on the backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one).
Kingdom
Organic compounds
Super Class
Phenylpropanoids and polyketides
Class
Flavonoids
Sub Class
Flavones
Direct Parent
Flavones
Alternative Parents
5-hydroxyflavonoids / 7-hydroxyflavonoids / Phenylpiperidines / Chromones / 1-hydroxy-2-unsubstituted benzenoids / Pyranones and derivatives / Aralkylamines / Chlorobenzenes / Aryl chlorides / Heteroaromatic compounds
show 10 more
Substituents
1,2-aminoalcohol / 1-benzopyran / 1-hydroxy-2-unsubstituted benzenoid / 5-hydroxyflavonoid / 7-hydroxyflavonoid / Alcohol / Amine / Aralkylamine / Aromatic heteropolycyclic compound / Aryl chloride
show 30 more
Molecular Framework
Aromatic heteropolycyclic compounds
External Descriptors
monochlorobenzenes, hydroxypiperidine, dihydroxyflavone (CHEBI:47344)
Affected organisms
Not Available

Chemical Identifiers

UNII
45AD6X575G
CAS number
146426-40-6
InChI Key
BIIVYFLTOXDAOV-YVEFUNNKSA-N
InChI
InChI=1S/C21H20ClNO5/c1-23-7-6-12(17(27)10-23)19-14(24)8-15(25)20-16(26)9-18(28-21(19)20)11-4-2-3-5-13(11)22/h2-5,8-9,12,17,24-25,27H,6-7,10H2,1H3/t12-,17+/m0/s1
IUPAC Name
2-(2-chlorophenyl)-5,7-dihydroxy-8-[(3S,4R)-3-hydroxy-1-methylpiperidin-4-yl]-4H-chromen-4-one
SMILES
CN1CC[C@@H]([C@H](O)C1)C1=C(O)C=C(O)C2=C1OC(=CC2=O)C1=CC=CC=C1Cl

References

Synthesis Reference

Kyoung Soon Kim, "Process for the preparation of chiral ketone intermediates useful for the preparation of flavopiridol and analogs." U.S. Patent US5908934, issued March, 1998.

US5908934
General References
Not Available
PubChem Compound
5287969
PubChem Substance
46507266
ChemSpider
4450222
BindingDB
5655
ChEBI
47344
ChEMBL
CHEMBL428690
ZINC
ZINC000021288966
Therapeutic Targets Database
DCL000422
PharmGKB
PA452627
PDBe Ligand
CPB
Wikipedia
Alvocidib
PDB Entries
1c8k / 1e1y / 3blr / 3ebp / 4o71

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns
2Active Not RecruitingTreatmentAcute Myeloid Leukemia1somestatusstop reasonjust information to hide
2CompletedTreatmentAcute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome / Adult Acute Megakaryoblastic Leukemia (M7) / Adult Acute Monoblastic Leukemia (M5a) / Adult Acute Monocytic Leukemia (M5b) / Adult Acute Myeloblastic Leukemia With Maturation (M2) / Adult Acute Myeloblastic Leukemia Without Maturation (M1) / Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities / Adult Acute Myeloid Leukemia With Del(5q) / Adult Acute Myeloid Leukemia With Inv(16)(p13;q22) / Adult Acute Myeloid Leukemia With Minimal Differentiation / Adult Acute Myeloid Leukemia With T(16;16)(p13;q22) / Adult Acute Myeloid Leukemia With T(8;21)(q22;q22) / Adult Acute Myelomonocytic Leukemia (M4) / Adult Erythroleukemia (M6a) / Adult Pure Erythroid Leukemia / Secondary Acute Myeloid Leukemia (Secondary AML, sAML) / Untreated Adult Acute Myeloid Leukemia1somestatusstop reasonjust information to hide
2CompletedTreatmentAcute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome / Adult Acute Monoblastic Leukemia (M5a) / Adult Acute Monocytic Leukemia (M5b) / Adult Acute Myeloblastic Leukemia With Maturation (M2) / Adult Acute Myeloblastic Leukemia Without Maturation (M1) / Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities / Adult Acute Myeloid Leukemia With Del(5q) / Adult Acute Myeloid Leukemia With Inv(16)(p13;q22) / Adult Acute Myeloid Leukemia With Minimal Differentiation / Adult Acute Myeloid Leukemia With T(16;16)(p13;q22) / Adult Acute Myeloid Leukemia With T(8;21)(q22;q22) / Adult Acute Myelomonocytic Leukemia (M4) / Adult Erythroleukemia (M6a) / Adult Pure Erythroid Leukemia / Secondary Acute Myeloid Leukemia (Secondary AML, sAML) / Untreated Adult Acute Myeloid Leukemia1somestatusstop reasonjust information to hide
2CompletedTreatmentAdenocarcinomas of the Gastroesophageal Junction / Diffuse Adenocarcinoma of the Stomach / Intestinal Type Adenocarcinoma of Stomach / Mixed Adenocarcinoma of the Stomach / Recurrent Gastric Cancer / Stage IIIA Gastric Cancer / Stage IIIB Gastric Cancer / Stage IIIC Gastric Cancer / Stage IV Gastric Cancer1somestatusstop reasonjust information to hide
2CompletedTreatmentAdult Acute Basophilic Leukemia / Adult Acute Eosinophilic Leukemia / Adult Acute Megakaryoblastic Leukemia (M7) / Adult Acute Monoblastic Leukemia (M5a) / Adult Acute Monocytic Leukemia (M5b) / Adult Acute Myeloblastic Leukemia With Maturation (M2) / Adult Acute Myeloblastic Leukemia Without Maturation (M1) / Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities / Adult Acute Myeloid Leukemia With Inv(16)(p13;q22) / Adult Acute Myeloid Leukemia With Minimal Differentiation / Adult Acute Myeloid Leukemia With T(16;16)(p13;q22) / Adult Acute Myeloid Leukemia With T(8;21)(q22;q22) / Adult Acute Myelomonocytic Leukemia (M4) / Adult Erythroleukemia (M6a) / Adult Pure Erythroid Leukemia / Secondary Acute Myeloid Leukemia (Secondary AML, sAML) / Untreated Adult Acute Myeloid Leukemia1somestatusstop reasonjust information to hide

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage Forms
Not Available
Prices
Not Available
Patents
Not Available

Properties

State
Solid
Experimental Properties
Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.094 mg/mLALOGPS
logP2.81ALOGPS
logP2.09Chemaxon
logS-3.6ALOGPS
pKa (Strongest Acidic)6.82Chemaxon
pKa (Strongest Basic)7.7Chemaxon
Physiological Charge0Chemaxon
Hydrogen Acceptor Count6Chemaxon
Hydrogen Donor Count3Chemaxon
Polar Surface Area90.23 Å2Chemaxon
Rotatable Bond Count2Chemaxon
Refractivity107.74 m3·mol-1Chemaxon
Polarizability40.85 Å3Chemaxon
Number of Rings4Chemaxon
Bioavailability1Chemaxon
Rule of FiveYesChemaxon
Ghose FilterYesChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleNoChemaxon
Predicted ADMET Features
PropertyValueProbability
Human Intestinal Absorption+0.9932
Blood Brain Barrier-0.557
Caco-2 permeable+0.6029
P-glycoprotein substrateSubstrate0.9095
P-glycoprotein inhibitor INon-inhibitor0.8213
P-glycoprotein inhibitor IINon-inhibitor0.7929
Renal organic cation transporterNon-inhibitor0.6429
CYP450 2C9 substrateNon-substrate0.7975
CYP450 2D6 substrateNon-substrate0.6651
CYP450 3A4 substrateSubstrate0.6517
CYP450 1A2 substrateNon-inhibitor0.6845
CYP450 2C9 inhibitorNon-inhibitor0.8621
CYP450 2D6 inhibitorNon-inhibitor0.7374
CYP450 2C19 inhibitorNon-inhibitor0.7358
CYP450 3A4 inhibitorNon-inhibitor0.9008
CYP450 inhibitory promiscuityLow CYP Inhibitory Promiscuity0.8937
Ames testNon AMES toxic0.7686
CarcinogenicityNon-carcinogens0.9375
BiodegradationNot ready biodegradable0.9923
Rat acute toxicity2.7659 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.5312
hERG inhibition (predictor II)Non-inhibitor0.715
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397)

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-0udi-0001900000-684dcffe5c484d91fb08
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-0udi-3003900000-a743fa584bfe62dbb37b
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-001i-0009200000-0d5e64faea5db5b0a84d
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-001i-9007400000-43d4369f97e4d4aa7344
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-0ugj-1019100000-42f0dc3cd222281aa010
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-001i-8249000000-5424fbd4517232074d91
Predicted 1H NMR Spectrum1D NMRNot Applicable
Predicted 13C NMR Spectrum1D NMRNot Applicable
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-185.0696
predicted
DeepCCS 1.0 (2019)
[M+H]+187.46516
predicted
DeepCCS 1.0 (2019)
[M+Na]+193.3777
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Allosteric enzyme that catalyzes the rate-limiting step in glycogen catabolism, the phosphorolytic cleavage of glycogen to produce glucose-1-phosphate, and plays a central role in maintaining cellular and organismal glucose homeostasis
Specific Function
glycogen phosphorylase activity
Gene Name
PYGM
Uniprot ID
P11217
Uniprot Name
Glycogen phosphorylase, muscle form
Molecular Weight
97091.265 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [Article]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [Article]
  3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [Article]
  4. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Details
2. Cyclin-dependent kinase 9
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Protein kinase involved in the regulation of transcription (PubMed:10574912, PubMed:10757782, PubMed:11145967, PubMed:11575923, PubMed:11809800, PubMed:11884399, PubMed:14701750, PubMed:16109376, PubMed:16109377, PubMed:20930849, PubMed:28426094, PubMed:29335245). Member of the cyclin-dependent kinase pair (CDK9/cyclin-T) complex, also called positive transcription elongation factor b (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II) POLR2A, SUPT5H and RDBP (PubMed:10574912, PubMed:10757782, PubMed:11145967, PubMed:11575923, PubMed:11809800, PubMed:11884399, PubMed:14701750, PubMed:16109376, PubMed:16109377, PubMed:20930849, PubMed:28426094, PubMed:30134174). This complex is inactive when in the 7SK snRNP complex form (PubMed:10574912, PubMed:10757782, PubMed:11145967, PubMed:11575923, PubMed:11809800, PubMed:11884399, PubMed:14701750, PubMed:16109376, PubMed:16109377, PubMed:20930849, PubMed:28426094). Phosphorylates EP300, MYOD1, RPB1/POLR2A and AR and the negative elongation factors DSIF and NELFE (PubMed:10912001, PubMed:11112772, PubMed:12037670, PubMed:20081228, PubMed:20980437, PubMed:21127351, PubMed:9857195). Regulates cytokine inducible transcription networks by facilitating promoter recognition of target transcription factors (e.g. TNF-inducible RELA/p65 activation and IL-6-inducible STAT3 signaling) (PubMed:17956865, PubMed:18362169). Promotes RNA synthesis in genetic programs for cell growth, differentiation and viral pathogenesis (PubMed:10393184, PubMed:11112772). P-TEFb is also involved in cotranscriptional histone modification, mRNA processing and mRNA export (PubMed:15564463, PubMed:19575011, PubMed:19844166). Modulates a complex network of chromatin modifications including histone H2B monoubiquitination (H2Bub1), H3 lysine 4 trimethylation (H3K4me3) and H3K36me3; integrates phosphorylation during transcription with chromatin modifications to control co-transcriptional histone mRNA processing (PubMed:15564463, PubMed:19575011, PubMed:19844166). The CDK9/cyclin-K complex has also a kinase activity towards CTD of RNAP II and can substitute for CDK9/cyclin-T P-TEFb in vitro (PubMed:21127351). Replication stress response protein; the CDK9/cyclin-K complex is required for genome integrity maintenance, by promoting cell cycle recovery from replication arrest and limiting single-stranded DNA amount in response to replication stress, thus reducing the breakdown of stalled replication forks and avoiding DNA damage (PubMed:20493174). In addition, probable function in DNA repair of isoform 2 via interaction with KU70/XRCC6 (PubMed:20493174). Promotes cardiac myocyte enlargement (PubMed:20081228). RPB1/POLR2A phosphorylation on 'Ser-2' in CTD activates transcription (PubMed:21127351). AR phosphorylation modulates AR transcription factor promoter selectivity and cell growth. DSIF and NELF phosphorylation promotes transcription by inhibiting their negative effect (PubMed:10912001, PubMed:11112772, PubMed:9857195). The phosphorylation of MYOD1 enhances its transcriptional activity and thus promotes muscle differentiation (PubMed:12037670). Catalyzes phosphorylation of KAT5, promoting KAT5 recruitment to chromatin and histone acetyltransferase activity (PubMed:29335245)
Specific Function
7SK snRNA binding
Gene Name
CDK9
Uniprot ID
P50750
Uniprot Name
Cyclin-dependent kinase 9
Molecular Weight
42777.155 Da
References
  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]
  2. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Glycogen phosphorylase that regulates glycogen mobilization (PubMed:27402852). Phosphorylase is an important allosteric enzyme in carbohydrate metabolism (PubMed:3346228). Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates (PubMed:3346228). However, all known phosphorylases share catalytic and structural properties (PubMed:3346228)
Specific Function
glycogen phosphorylase activity
Gene Name
PYGB
Uniprot ID
P11216
Uniprot Name
Glycogen phosphorylase, brain form
Molecular Weight
96695.18 Da
References
  1. Kaiser A, Nishi K, Gorin FA, Walsh DA, Bradbury EM, Schnier JB: The cyclin-dependent kinase (CDK) inhibitor flavopiridol inhibits glycogen phosphorylase. Arch Biochem Biophys. 2001 Feb 15;386(2):179-87. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Allosteric enzyme that catalyzes the rate-limiting step in glycogen catabolism, the phosphorolytic cleavage of glycogen to produce glucose-1-phosphate, and plays a central role in maintaining cellular and organismal glucose homeostasis
Specific Function
AMP binding
Gene Name
PYGL
Uniprot ID
P06737
Uniprot Name
Glycogen phosphorylase, liver form
Molecular Weight
97147.82 Da
References
  1. Kaiser A, Nishi K, Gorin FA, Walsh DA, Bradbury EM, Schnier JB: The cyclin-dependent kinase (CDK) inhibitor flavopiridol inhibits glycogen phosphorylase. Arch Biochem Biophys. 2001 Feb 15;386(2):179-87. [Article]
Details
5. Cyclin-dependent kinase 7
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Serine/threonine kinase involved in cell cycle control and in RNA polymerase II-mediated RNA transcription. Cyclin-dependent kinases (CDKs) are activated by the binding to a cyclin and mediate the progression through the cell cycle. Each different complex controls a specific transition between 2 subsequent phases in the cell cycle. Required for both activation and complex formation of CDK1/cyclin-B during G2-M transition, and for activation of CDK2/cyclins during G1-S transition (but not complex formation). CDK7 is the catalytic subunit of the CDK-activating kinase (CAK) complex. Phosphorylates SPT5/SUPT5H, SF1/NR5A1, POLR2A, p53/TP53, CDK1, CDK2, CDK4, CDK6 and CDK11B/CDK11. CAK activates the cyclin-associated kinases CDK1, CDK2, CDK4 and CDK6 by threonine phosphorylation, thus regulating cell cycle progression. CAK complexed to the core-TFIIH basal transcription factor activates RNA polymerase II by serine phosphorylation of the repetitive C-terminal domain (CTD) of its large subunit (POLR2A), allowing its escape from the promoter and elongation of the transcripts (PubMed:9852112). Phosphorylation of POLR2A in complex with DNA promotes transcription initiation by triggering dissociation from DNA. Its expression and activity are constant throughout the cell cycle. Upon DNA damage, triggers p53/TP53 activation by phosphorylation, but is inactivated in turn by p53/TP53; this feedback loop may lead to an arrest of the cell cycle and of the transcription, helping in cell recovery, or to apoptosis. Required for DNA-bound peptides-mediated transcription and cellular growth inhibition
Specific Function
ATP binding
Gene Name
CDK7
Uniprot ID
P50613
Uniprot Name
Cyclin-dependent kinase 7
Molecular Weight
39038.005 Da
References
  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]
Details
6. Cyclin-dependent kinase 5
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Proline-directed serine/threonine-protein kinase essential for neuronal cell cycle arrest and differentiation and may be involved in apoptotic cell death in neuronal diseases by triggering abortive cell cycle re-entry. Interacts with D1 and D3-type G1 cyclins. Phosphorylates SRC, NOS3, VIM/vimentin, p35/CDK5R1, MEF2A, SIPA1L1, SH3GLB1, PXN, PAK1, MCAM/MUC18, SEPT5, SYN1, DNM1, AMPH, SYNJ1, CDK16, RAC1, RHOA, CDC42, TONEBP/NFAT5, MAPT/TAU, MAP1B, histone H1, p53/TP53, HDAC1, APEX1, PTK2/FAK1, huntingtin/HTT, ATM, MAP2, NEFH and NEFM. Regulates several neuronal development and physiological processes including neuronal survival, migration and differentiation, axonal and neurite growth, synaptogenesis, oligodendrocyte differentiation, synaptic plasticity and neurotransmission, by phosphorylating key proteins. Negatively regulates the CACNA1B/CAV2.2 -mediated Ca(2+) release probability at hippocampal neuronal soma and synaptic terminals (By similarity). Activated by interaction with CDK5R1 (p35) and CDK5R2 (p39), especially in postmitotic neurons, and promotes CDK5R1 (p35) expression in an autostimulation loop. Phosphorylates many downstream substrates such as Rho and Ras family small GTPases (e.g. PAK1, RAC1, RHOA, CDC42) or microtubule-binding proteins (e.g. MAPT/TAU, MAP2, MAP1B), and modulates actin dynamics to regulate neurite growth and/or spine morphogenesis. Phosphorylates also exocytosis associated proteins such as MCAM/MUC18, SEPT5, SYN1, and CDK16/PCTAIRE1 as well as endocytosis associated proteins such as DNM1, AMPH and SYNJ1 at synaptic terminals. In the mature central nervous system (CNS), regulates neurotransmitter movements by phosphorylating substrates associated with neurotransmitter release and synapse plasticity; synaptic vesicle exocytosis, vesicles fusion with the presynaptic membrane, and endocytosis. Promotes cell survival by activating anti-apoptotic proteins BCL2 and STAT3, and negatively regulating of JNK3/MAPK10 activity. Phosphorylation of p53/TP53 in response to genotoxic and oxidative stresses enhances its stabilization by preventing ubiquitin ligase-mediated proteasomal degradation, and induces transactivation of p53/TP53 target genes, thus regulating apoptosis. Phosphorylation of p35/CDK5R1 enhances its stabilization by preventing calpain-mediated proteolysis producing p25/CDK5R1 and avoiding ubiquitin ligase-mediated proteasomal degradation. During aberrant cell-cycle activity and DNA damage, p25/CDK5 activity elicits cell-cycle activity and double-strand DNA breaks that precedes neuronal death by deregulating HDAC1. DNA damage triggered phosphorylation of huntingtin/HTT in nuclei of neurons protects neurons against polyglutamine expansion as well as DNA damage mediated toxicity. Phosphorylation of PXN reduces its interaction with PTK2/FAK1 in matrix-cell focal adhesions (MCFA) during oligodendrocytes (OLs) differentiation. Negative regulator of Wnt/beta-catenin signaling pathway. Activator of the GAIT (IFN-gamma-activated inhibitor of translation) pathway, which suppresses expression of a post-transcriptional regulon of proinflammatory genes in myeloid cells; phosphorylates the linker domain of glutamyl-prolyl tRNA synthetase (EPRS) in a IFN-gamma-dependent manner, the initial event in assembly of the GAIT complex. Phosphorylation of SH3GLB1 is required for autophagy induction in starved neurons. Phosphorylation of TONEBP/NFAT5 in response to osmotic stress mediates its rapid nuclear localization. MEF2 is inactivated by phosphorylation in nucleus in response to neurotoxin, thus leading to neuronal apoptosis. APEX1 AP-endodeoxyribonuclease is repressed by phosphorylation, resulting in accumulation of DNA damage and contributing to neuronal death. NOS3 phosphorylation down regulates NOS3-derived nitrite (NO) levels. SRC phosphorylation mediates its ubiquitin-dependent degradation and thus leads to cytoskeletal reorganization. May regulate endothelial cell migration and angiogenesis via the modulation of lamellipodia formation. Involved in dendritic spine morphogenesis by mediating the EFNA1-EPHA4 signaling. The complex p35/CDK5 participates in the regulation of the circadian clock by modulating the function of CLOCK protein: phosphorylates CLOCK at 'Thr-451' and 'Thr-461' and regulates the transcriptional activity of the CLOCK-BMAL1 heterodimer in association with altered stability and subcellular distribution
Specific Function
acetylcholine receptor activator activity
Gene Name
CDK5
Uniprot ID
Q00535
Uniprot Name
Cyclin-dependent kinase 5
Molecular Weight
33304.125 Da
References
  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]
Details
7. Cyclin-dependent kinase 1
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Plays a key role in the control of the eukaryotic cell cycle by modulating the centrosome cycle as well as mitotic onset; promotes G2-M transition via association with multiple interphase cyclins (PubMed:16407259, PubMed:16933150, PubMed:17459720, PubMed:18356527, PubMed:19509060, PubMed:19917720, PubMed:20171170, PubMed:20935635, PubMed:20937773, PubMed:21063390, PubMed:2188730, PubMed:23355470, PubMed:2344612, PubMed:23601106, PubMed:23602554, PubMed:25556658, PubMed:26829474, PubMed:27814491, PubMed:30139873, PubMed:30704899). Phosphorylates PARVA/actopaxin, APC, AMPH, APC, BARD1, Bcl-xL/BCL2L1, BRCA2, CALD1, CASP8, CDC7, CDC20, CDC25A, CDC25C, CC2D1A, CENPA, CSNK2 proteins/CKII, FZR1/CDH1, CDK7, CEBPB, CHAMP1, DMD/dystrophin, EEF1 proteins/EF-1, EZH2, KIF11/EG5, EGFR, FANCG, FOS, GFAP, GOLGA2/GM130, GRASP1, UBE2A/hHR6A, HIST1H1 proteins/histone H1, HMGA1, HIVEP3/KRC, KAT5, LMNA, LMNB, LBR, LATS1, MAP1B, MAP4, MARCKS, MCM2, MCM4, MKLP1, MLST8, MYB, NEFH, NFIC, NPC/nuclear pore complex, PITPNM1/NIR2, NPM1, NCL, NUCKS1, NPM1/numatrin, ORC1, PRKAR2A, EEF1E1/p18, EIF3F/p47, p53/TP53, NONO/p54NRB, PAPOLA, PLEC/plectin, RB1, TPPP, UL40/R2, RAB4A, RAP1GAP, RBBP8/CtIP, RCC1, RPS6KB1/S6K1, KHDRBS1/SAM68, ESPL1, SKI, BIRC5/survivin, STIP1, TEX14, beta-tubulins, MAPT/TAU, NEDD1, VIM/vimentin, TK1, FOXO1, RUNX1/AML1, SAMHD1, SIRT2, CGAS and RUNX2 (PubMed:16407259, PubMed:16933150, PubMed:17459720, PubMed:18356527, PubMed:19202191, PubMed:19509060, PubMed:19917720, PubMed:20171170, PubMed:20935635, PubMed:20937773, PubMed:21063390, PubMed:2188730, PubMed:23355470, PubMed:2344612, PubMed:23601106, PubMed:23602554, PubMed:25556658, PubMed:26829474, PubMed:27814491, PubMed:30704899, PubMed:32351706, PubMed:34741373). CDK1/CDC2-cyclin-B controls pronuclear union in interphase fertilized eggs (PubMed:18480403, PubMed:20360007). Essential for early stages of embryonic development (PubMed:18480403, PubMed:20360007). During G2 and early mitosis, CDC25A/B/C-mediated dephosphorylation activates CDK1/cyclin complexes which phosphorylate several substrates that trigger at least centrosome separation, Golgi dynamics, nuclear envelope breakdown and chromosome condensation (PubMed:18480403, PubMed:20360007, PubMed:2188730, PubMed:2344612, PubMed:30139873). Once chromosomes are condensed and aligned at the metaphase plate, CDK1 activity is switched off by WEE1- and PKMYT1-mediated phosphorylation to allow sister chromatid separation, chromosome decondensation, reformation of the nuclear envelope and cytokinesis (PubMed:18480403, PubMed:20360007). Phosphorylates KRT5 during prometaphase and metaphase (By similarity). Inactivated by PKR/EIF2AK2- and WEE1-mediated phosphorylation upon DNA damage to stop cell cycle and genome replication at the G2 checkpoint thus facilitating DNA repair (PubMed:20360007). Reactivated after successful DNA repair through WIP1-dependent signaling leading to CDC25A/B/C-mediated dephosphorylation and restoring cell cycle progression (PubMed:20395957). Catalyzes lamin (LMNA, LMNB1 and LMNB2) phosphorylation at the onset of mitosis, promoting nuclear envelope breakdown (PubMed:2188730, PubMed:2344612, PubMed:37788673). In proliferating cells, CDK1-mediated FOXO1 phosphorylation at the G2-M phase represses FOXO1 interaction with 14-3-3 proteins and thereby promotes FOXO1 nuclear accumulation and transcription factor activity, leading to cell death of postmitotic neurons (PubMed:18356527). The phosphorylation of beta-tubulins regulates microtubule dynamics during mitosis (PubMed:16371510). NEDD1 phosphorylation promotes PLK1-mediated NEDD1 phosphorylation and subsequent targeting of the gamma-tubulin ring complex (gTuRC) to the centrosome, an important step for spindle formation (PubMed:19509060). In addition, CC2D1A phosphorylation regulates CC2D1A spindle pole localization and association with SCC1/RAD21 and centriole cohesion during mitosis (PubMed:20171170). The phosphorylation of Bcl-xL/BCL2L1 after prolongated G2 arrest upon DNA damage triggers apoptosis (PubMed:19917720). In contrast, CASP8 phosphorylation during mitosis prevents its activation by proteolysis and subsequent apoptosis (PubMed:20937773). This phosphorylation occurs in cancer cell lines, as well as in primary breast tissues and lymphocytes (PubMed:20937773). EZH2 phosphorylation promotes H3K27me3 maintenance and epigenetic gene silencing (PubMed:20935635). CALD1 phosphorylation promotes Schwann cell migration during peripheral nerve regeneration (By similarity). CDK1-cyclin-B complex phosphorylates NCKAP5L and mediates its dissociation from centrosomes during mitosis (PubMed:26549230). Regulates the amplitude of the cyclic expression of the core clock gene BMAL1 by phosphorylating its transcriptional repressor NR1D1, and this phosphorylation is necessary for SCF(FBXW7)-mediated ubiquitination and proteasomal degradation of NR1D1 (PubMed:27238018). Phosphorylates EML3 at 'Thr-881' which is essential for its interaction with HAUS augmin-like complex and TUBG1 (PubMed:30723163). Phosphorylates CGAS during mitosis, leading to its inhibition, thereby preventing CGAS activation by self DNA during mitosis (PubMed:32351706). Phosphorylates SKA3 on multiple sites during mitosis which promotes SKA3 binding to the NDC80 complex and anchoring of the SKA complex to kinetochores, to enable stable attachment of mitotic spindle microtubules to kinetochores (PubMed:28479321, PubMed:31804178, PubMed:32491969)
Specific Function
ATP binding
Gene Name
CDK1
Uniprot ID
P06493
Uniprot Name
Cyclin-dependent kinase 1
Molecular Weight
34095.14 Da
References
  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]
Details
8. Cyclin-dependent kinase 6
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Serine/threonine-protein kinase involved in the control of the cell cycle and differentiation; promotes G1/S transition. Phosphorylates pRB/RB1 and NPM1. Interacts with D-type G1 cyclins during interphase at G1 to form a pRB/RB1 kinase and controls the entrance into the cell cycle. Involved in initiation and maintenance of cell cycle exit during cell differentiation; prevents cell proliferation and negatively regulates cell differentiation, but is required for the proliferation of specific cell types (e.g. erythroid and hematopoietic cells). Essential for cell proliferation within the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. Required during thymocyte development. Promotes the production of newborn neurons, probably by modulating G1 length. Promotes, at least in astrocytes, changes in patterns of gene expression, changes in the actin cytoskeleton including loss of stress fibers, and enhanced motility during cell differentiation. Prevents myeloid differentiation by interfering with RUNX1 and reducing its transcription transactivation activity, but promotes proliferation of normal myeloid progenitors. Delays senescence. Promotes the proliferation of beta-cells in pancreatic islets of Langerhans. May play a role in the centrosome organization during the cell cycle phases (PubMed:23918663)
Specific Function
ATP binding
Gene Name
CDK6
Uniprot ID
Q00534
Uniprot Name
Cyclin-dependent kinase 6
Molecular Weight
36938.025 Da
References
  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:10805725, PubMed:27153536, PubMed:2790960, PubMed:35538033). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (PubMed:12297049, PubMed:15611079, PubMed:17909029, PubMed:20837704, PubMed:27153536, PubMed:2790960, PubMed:7679104, PubMed:8144591, PubMed:9419975). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed:27153536). May also activate the NF-kappa-B signaling cascade (PubMed:11116146). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed:11602604). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:11483589). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:20462955). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity)
Specific Function
actin filament binding
Gene Name
EGFR
Uniprot ID
P00533
Uniprot Name
Epidermal growth factor receptor
Molecular Weight
134276.185 Da
References
  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]
Details
10. Cyclin-dependent kinase 4
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Ser/Thr-kinase component of cyclin D-CDK4 (DC) complexes that phosphorylate and inhibit members of the retinoblastoma (RB) protein family including RB1 and regulate the cell-cycle during G(1)/S transition. Phosphorylation of RB1 allows dissociation of the transcription factor E2F from the RB/E2F complexes and the subsequent transcription of E2F target genes which are responsible for the progression through the G(1) phase. Hypophosphorylates RB1 in early G(1) phase. Cyclin D-CDK4 complexes are major integrators of various mitogenenic and antimitogenic signals. Also phosphorylates SMAD3 in a cell-cycle-dependent manner and represses its transcriptional activity. Component of the ternary complex, cyclin D/CDK4/CDKN1B, required for nuclear translocation and activity of the cyclin D-CDK4 complex
Specific Function
ATP binding
Gene Name
CDK4
Uniprot ID
P11802
Uniprot Name
Cyclin-dependent kinase 4
Molecular Weight
33729.55 Da
References
  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]
Details
11. Cyclin-dependent kinase 8
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Component of the Mediator complex, a coactivator involved in regulated gene transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. Phosphorylates the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAp II), which may inhibit the formation of a transcription initiation complex. Phosphorylates CCNH leading to down-regulation of the TFIIH complex and transcriptional repression. Recruited through interaction with MAML1 to hyperphosphorylate the intracellular domain of NOTCH, leading to its degradation
Specific Function
ATP binding
Gene Name
CDK8
Uniprot ID
P49336
Uniprot Name
Cyclin-dependent kinase 8
Molecular Weight
53283.335 Da
References
  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]
Details
12. Cyclin-dependent kinase 2
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Serine/threonine-protein kinase involved in the control of the cell cycle; essential for meiosis, but dispensable for mitosis (PubMed:10499802, PubMed:10884347, PubMed:10995386, PubMed:10995387, PubMed:11051553, PubMed:11113184, PubMed:12944431, PubMed:15800615, PubMed:17495531, PubMed:19966300, PubMed:20935635, PubMed:21262353, PubMed:21596315, PubMed:28216226, PubMed:28666995). Phosphorylates CABLES1, CTNNB1, CDK2AP2, ERCC6, NBN, USP37, p53/TP53, NPM1, CDK7, RB1, BRCA2, MYC, NPAT, EZH2 (PubMed:10499802, PubMed:10995386, PubMed:10995387, PubMed:11051553, PubMed:11113184, PubMed:12944431, PubMed:15800615, PubMed:19966300, PubMed:20935635, PubMed:21262353, PubMed:21596315, PubMed:28216226). Triggers duplication of centrosomes and DNA (PubMed:11051553). Acts at the G1-S transition to promote the E2F transcriptional program and the initiation of DNA synthesis, and modulates G2 progression; controls the timing of entry into mitosis/meiosis by controlling the subsequent activation of cyclin B/CDK1 by phosphorylation, and coordinates the activation of cyclin B/CDK1 at the centrosome and in the nucleus (PubMed:18372919, PubMed:19238148, PubMed:19561645). Crucial role in orchestrating a fine balance between cellular proliferation, cell death, and DNA repair in embryonic stem cells (ESCs) (PubMed:18372919, PubMed:19238148, PubMed:19561645). Activity of CDK2 is maximal during S phase and G2; activated by interaction with cyclin E during the early stages of DNA synthesis to permit G1-S transition, and subsequently activated by cyclin A2 (cyclin A1 in germ cells) during the late stages of DNA replication to drive the transition from S phase to mitosis, the G2 phase (PubMed:18372919, PubMed:19238148, PubMed:19561645). EZH2 phosphorylation promotes H3K27me3 maintenance and epigenetic gene silencing (PubMed:20935635). Cyclin E/CDK2 prevents oxidative stress-mediated Ras-induced senescence by phosphorylating MYC (PubMed:19966300). Involved in G1-S phase DNA damage checkpoint that prevents cells with damaged DNA from initiating mitosis; regulates homologous recombination-dependent repair by phosphorylating BRCA2, this phosphorylation is low in S phase when recombination is active, but increases as cells progress towards mitosis (PubMed:15800615, PubMed:20195506, PubMed:21319273). In response to DNA damage, double-strand break repair by homologous recombination a reduction of CDK2-mediated BRCA2 phosphorylation (PubMed:15800615). Involved in regulation of telomere repair by mediating phosphorylation of NBN (PubMed:28216226). Phosphorylation of RB1 disturbs its interaction with E2F1 (PubMed:10499802). NPM1 phosphorylation by cyclin E/CDK2 promotes its dissociates from unduplicated centrosomes, thus initiating centrosome duplication (PubMed:11051553). Cyclin E/CDK2-mediated phosphorylation of NPAT at G1-S transition and until prophase stimulates the NPAT-mediated activation of histone gene transcription during S phase (PubMed:10995386, PubMed:10995387). Required for vitamin D-mediated growth inhibition by being itself inactivated (PubMed:20147522). Involved in the nitric oxide- (NO) mediated signaling in a nitrosylation/activation-dependent manner (PubMed:20079829). USP37 is activated by phosphorylation and thus triggers G1-S transition (PubMed:21596315). CTNNB1 phosphorylation regulates insulin internalization (PubMed:21262353). Phosphorylates FOXP3 and negatively regulates its transcriptional activity and protein stability (By similarity). Phosphorylates ERCC6 which is essential for its chromatin remodeling activity at DNA double-strand breaks (PubMed:29203878)
Specific Function
ATP binding
Gene Name
CDK2
Uniprot ID
P24941
Uniprot Name
Cyclin-dependent kinase 2
Molecular Weight
33929.215 Da
References
  1. Zvelebil MJ: Flavopiridol Hoechst AG. IDrugs. 1998 Jun;1(2):241-6. [Article]
  2. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]

Enzymes

Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Substrate
General Function
UDP-glucuronosyltransferase (UGT) that catalyzes phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase the metabolite's water solubility, thereby facilitating excretion into either the urine or bile (PubMed:12181437, PubMed:15472229, PubMed:18004206, PubMed:18004212, PubMed:18719240, PubMed:19830808, PubMed:23288867). Essential for the elimination and detoxification of drugs, xenobiotics and endogenous compounds (PubMed:12181437, PubMed:18004206, PubMed:18004212). Catalyzes the glucuronidation of endogenous estrogen hormones such as estradiol, estrone and estriol (PubMed:15472229, PubMed:18719240, PubMed:23288867). Involved in the glucuronidation of bilirubin, a degradation product occurring in the normal catabolic pathway that breaks down heme in vertebrates (PubMed:17187418, PubMed:18004206, PubMed:19830808, PubMed:24525562). Also catalyzes the glucuronidation the isoflavones genistein, daidzein, glycitein, formononetin, biochanin A and prunetin, which are phytoestrogens with anticancer and cardiovascular properties (PubMed:18052087, PubMed:19545173). Involved in the glucuronidation of the AGTR1 angiotensin receptor antagonist losartan, a drug which can inhibit the effect of angiotensin II (PubMed:18674515). Involved in the biotransformation of 7-ethyl-10-hydroxycamptothecin (SN-38), the pharmacologically active metabolite of the anticancer drug irinotecan (PubMed:12181437, PubMed:18004212, PubMed:20610558)
Specific Function
enzyme binding
Gene Name
UGT1A1
Uniprot ID
P22309
Uniprot Name
UDP-glucuronosyltransferase 1A1
Molecular Weight
59590.91 Da
References
  1. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE: Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004 Nov;32(11):1201-8. doi: 10.1124/dmd.104.000794. Epub 2004 Aug 10. [Article]

Transporters

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
Broad substrate specificity ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes a wide variety of physiological compounds, dietary toxins and xenobiotics from cells (PubMed:11306452, PubMed:12958161, PubMed:19506252, PubMed:20705604, PubMed:28554189, PubMed:30405239, PubMed:31003562). Involved in porphyrin homeostasis, mediating the export of protoporphyrin IX (PPIX) from both mitochondria to cytosol and cytosol to extracellular space, it also functions in the cellular export of heme (PubMed:20705604, PubMed:23189181). Also mediates the efflux of sphingosine-1-P from cells (PubMed:20110355). Acts as a urate exporter functioning in both renal and extrarenal urate excretion (PubMed:19506252, PubMed:20368174, PubMed:22132962, PubMed:31003562, PubMed:36749388). In kidney, it also functions as a physiological exporter of the uremic toxin indoxyl sulfate (By similarity). Also involved in the excretion of steroids like estrone 3-sulfate/E1S, 3beta-sulfooxy-androst-5-en-17-one/DHEAS, and other sulfate conjugates (PubMed:12682043, PubMed:28554189, PubMed:30405239). Mediates the secretion of the riboflavin and biotin vitamins into milk (By similarity). Extrudes pheophorbide a, a phototoxic porphyrin catabolite of chlorophyll, reducing its bioavailability (By similarity). Plays an important role in the exclusion of xenobiotics from the brain (Probable). It confers to cells a resistance to multiple drugs and other xenobiotics including mitoxantrone, pheophorbide, camptothecin, methotrexate, azidothymidine, and the anthracyclines daunorubicin and doxorubicin, through the control of their efflux (PubMed:11306452, PubMed:12477054, PubMed:15670731, PubMed:18056989, PubMed:31254042). In placenta, it limits the penetration of drugs from the maternal plasma into the fetus (By similarity). May play a role in early stem cell self-renewal by blocking differentiation (By similarity)
Specific Function
ABC-type xenobiotic transporter activity
Gene Name
ABCG2
Uniprot ID
Q9UNQ0
Uniprot Name
Broad substrate specificity ATP-binding cassette transporter ABCG2
Molecular Weight
72313.47 Da
References
  1. Nakanishi T, Karp JE, Tan M, Doyle LA, Peters T, Yang W, Wei D, Ross DD: Quantitative analysis of breast cancer resistance protein and cellular resistance to flavopiridol in acute leukemia patients. Clin Cancer Res. 2003 Aug 15;9(9):3320-8. [Article]
  2. Nakanishi T, Doyle LA, Hassel B, Wei Y, Bauer KS, Wu S, Pumplin DW, Fang HB, Ross DD: Functional characterization of human breast cancer resistance protein (BCRP, ABCG2) expressed in the oocytes of Xenopus laevis. Mol Pharmacol. 2003 Dec;64(6):1452-62. [Article]
  3. Shi Z, Parmar S, Peng XX, Shen T, Robey RW, Bates SE, Fu LW, Shao Y, Chen YM, Zang F, Chen ZS: The epidermal growth factor tyrosine kinase inhibitor AG1478 and erlotinib reverse ABCG2-mediated drug resistance. Oncol Rep. 2009 Feb;21(2):483-9. [Article]

Drug created at June 13, 2005 13:24 / Updated at October 21, 2024 12:52