Rimiducid

Identification

Summary

Rimiducid is a homodimerizing agent potentially used in combination with cellular immunotherapies for cancers and blood disorders to increase the therapeutic effectiveness.

Generic Name
Rimiducid
DrugBank Accession Number
DB04974
Background

Rimiducid is a lipid-permeable tacrolimus analogue and a protein dimerizer. It was designed to overcome limitations of current cellular immunotherapies used for cancer and other blood disorders by enhancing the control of the immune cell activity and function. When administered via chemically-inducible dimerization (CID) technologies, rimiducid binds to switch proteins and dimerizes them, triggering downstream signaling cascade.1,6 The combination use of rimiducid with immunotherapies for enhanced therapeutic effectiveness is currently under investigation.

Type
Small Molecule
Groups
Investigational
Structure
Weight
Average: 1411.65
Monoisotopic: 1410.677441572
Chemical Formula
C78H98N4O20
Synonyms
  • Rimiducid
External IDs
  • AP 1903
  • AP-1903
  • AP1903

Pharmacology

Indication

Investigated for use/treatment in bone marrow transplant and graft versus host disease.

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Rimiducis is used to activate inducible caspase-9 produced by a modified gene included in some CAR T-cell therapies.2,3 This activation produces rapid induction of apoptosis in activated modified T-cells and resolution of the signs and symptoms of graft versus host disease within 24 hours.4

Mechanism of action

Rimiducid binds to a drug binding domain derived from human FK506-binding protein which is present on a modified form of inducible caspase-9.2 This binding results in dimerization and subsequent activation of caspase-9. This system was designed to function as a "safety switch" in CAR T-cell therapy used in hematological cancers. Retroviral vectors used in production of these modified cells preferentially integrate this gene nearby promoters associated with T-cell activation. This results in higher expression of the modified inducible caspase-9 product in activated T-cells. In practice, this allows for specific targeting of these active T-cells by rimiducid which results in a decrease in circulating cell numbers of over 90% in the setting of graft versus host disease. This specificity spares non-alloreactive T-cells and allows for successful reconstitution of the transplanted immune system from these cells.[24753538] Additionally, these non-alloreactive cells retain their sensitivity to rimiducid.

TargetActionsOrganism
APeptidyl-prolyl cis-trans isomerase FKBP1A
modulator
Humans
USerine/threonine-protein kinase mTOR
ligand
Humans
Absorption

Not Available

Volume of distribution

Not Available

Protein binding

Not Available

Metabolism
Not Available
Route of elimination

Not Available

Half-life

Not Available

Clearance

Not Available

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

Not Available

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
Not Available
Food Interactions
Not Available

Categories

Drug Categories
Classification
Not classified
Affected organisms
Not Available

Chemical Identifiers

UNII
H564L1W5J2
CAS number
195514-63-7
InChI Key
GQLCLPLEEOUJQC-ZTQDTCGGSA-N
InChI
InChI=1S/C78H98N4O20/c1-13-57(53-43-67(93-7)73(97-11)68(44-53)94-8)75(85)81-37-17-15-25-59(81)77(87)101-61(31-27-49-29-33-63(89-3)65(39-49)91-5)51-21-19-23-55(41-51)99-47-71(83)79-35-36-80-72(84)48-100-56-24-20-22-52(42-56)62(32-28-50-30-34-64(90-4)66(40-50)92-6)102-78(88)60-26-16-18-38-82(60)76(86)58(14-2)54-45-69(95-9)74(98-12)70(46-54)96-10/h19-24,29-30,33-34,39-46,57-62H,13-18,25-28,31-32,35-38,47-48H2,1-12H3,(H,79,83)(H,80,84)/t57-,58-,59-,60-,61+,62+/m0/s1
IUPAC Name
(1R)-3-(3,4-dimethoxyphenyl)-1-[3-({[2-(2-{3-[(1R)-3-(3,4-dimethoxyphenyl)-1-[(2S)-1-[(2S)-2-(3,4,5-trimethoxyphenyl)butanoyl]piperidine-2-carbonyloxy]propyl]phenoxy}acetamido)ethyl]carbamoyl}methoxy)phenyl]propyl (2S)-1-[(2S)-2-(3,4,5-trimethoxyphenyl)butanoyl]piperidine-2-carboxylate
SMILES
CC[C@H](C(=O)N1CCCC[C@H]1C(=O)O[C@H](CCC1=CC=C(OC)C(OC)=C1)C1=CC(OCC(=O)NCCNC(=O)COC2=CC=CC(=C2)[C@@H](CCC2=CC=C(OC)C(OC)=C2)OC(=O)[C@@H]2CCCCN2C(=O)[C@@H](CC)C2=CC(OC)=C(OC)C(OC)=C2)=CC=C1)C1=CC(OC)=C(OC)C(OC)=C1

References

General References
  1. DeRose R, Miyamoto T, Inoue T: Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology. Pflugers Arch. 2013 Mar;465(3):409-17. doi: 10.1007/s00424-012-1208-6. Epub 2013 Jan 9. [Article]
  2. Straathof KC, Pule MA, Yotnda P, Dotti G, Vanin EF, Brenner MK, Heslop HE, Spencer DM, Rooney CM: An inducible caspase 9 safety switch for T-cell therapy. Blood. 2005 Jun 1;105(11):4247-54. doi: 10.1182/blood-2004-11-4564. Epub 2005 Feb 22. [Article]
  3. Gargett T, Brown MP: The inducible caspase-9 suicide gene system as a "safety switch" to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol. 2014 Oct 28;5:235. doi: 10.3389/fphar.2014.00235. eCollection 2014. [Article]
  4. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, Straathof K, Liu E, Durett AG, Grilley B, Liu H, Cruz CR, Savoldo B, Gee AP, Schindler J, Krance RA, Heslop HE, Spencer DM, Rooney CM, Brenner MK: Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011 Nov 3;365(18):1673-83. doi: 10.1056/NEJMoa1106152. [Article]
  5. Definition of rimiducid - NCI Drug Dictionary - National Cancer Institute [Link]
  6. Technology - Bellicum Pharmaceuticals, Inc. [Link]
PubChem Substance
347909868
ChemSpider
17292138
ChEMBL
CHEMBL269259

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns
2, 3TerminatedTreatmentAcute Myeloid Leukemia / Myelodysplastic Syndrome1somestatusstop reasonjust information to hide
1Active Not RecruitingOtherMultiple Myeloma (MM)1somestatusstop reasonjust information to hide
1Active Not RecruitingTreatmentAcinic Cell Tumor / Adenoid Cystic Carcinoma / Castration Resistant Prostatic Neoplasms / Genital Neoplasms, Male / Genitourinary tract neoplasm / Metastatic Castration-Resistant Prostate Cancer (mCRPC) / Mucoepidermoid Carcinoma / Neoplasm / Neoplasms by Histologic Type / Neoplasms by Site / Neoplasms of the Prostate / Prostate Cancer / Prostatic Diseases / Salivary Duct Carcinoma / Salivary Gland Cancers / Salivary Glands Tumors1somestatusstop reasonjust information to hide
1Active Not RecruitingTreatmentAcute Lymphoblastic Leukemia (ALL) / Acute Myeloid Leukemia / Chronic Myelogenous Leukemia (CML) / Epstein Barr Virus Infections / Familial Hemophagocytic Lymphohistiocytosis (FLH) / Hemophagocytic Lymphohistiocytosis / Hemophagocytic Syndrome (HPS) / Myelodysplastic Syndrome / Non-Hodgkin's Lymphoma (NHL) / X-linked Lymphoproliferative Disease (XLP)1somestatusstop reasonjust information to hide
1Active Not RecruitingTreatmentBreast Cancer / Metastatic HER2-negative Breast1somestatusstop reasonjust information to hide

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage Forms
Not Available
Prices
Not Available
Patents
Not Available

Properties

State
Solid
Experimental Properties
Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.000397 mg/mLALOGPS
logP6.88ALOGPS
logP10.06Chemaxon
logS-6.6ALOGPS
pKa (Strongest Acidic)14.34Chemaxon
pKa (Strongest Basic)-1.2Chemaxon
Physiological Charge0Chemaxon
Hydrogen Acceptor Count18Chemaxon
Hydrogen Donor Count2Chemaxon
Polar Surface Area262.18 Å2Chemaxon
Rotatable Bond Count39Chemaxon
Refractivity379.49 m3·mol-1Chemaxon
Polarizability153.98 Å3Chemaxon
Number of Rings8Chemaxon
Bioavailability0Chemaxon
Rule of FiveNoChemaxon
Ghose FilterNoChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleYesChemaxon
Predicted ADMET Features
Not Available

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-000i-0091000400-a8fbcbb96dc2d5ee4e22
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-0016-0911001300-dcf9b2572567afe75410
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-0a4r-0090000100-78a1961ddb89167bda47
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-06w9-2936001500-43d2294b7d9d22cc4fc3
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-03dr-1191201200-beae292738181b756db7
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-0cdi-0294705000-1369140a419a22549ca9
Chromatographic Properties
Collision Cross Sections (CCS)
Not Available

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Modulator
General Function
Keeps in an inactive conformation TGFBR1, the TGF-beta type I serine/threonine kinase receptor, preventing TGF-beta receptor activation in absence of ligand. Recruits SMAD7 to ACVR1B which prevents the association of SMAD2 and SMAD3 with the activin receptor complex, thereby blocking the activin signal. May modulate the RYR1 calcium channel activity. PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides
Specific Function
Activin receptor binding
Gene Name
FKBP1A
Uniprot ID
P62942
Uniprot Name
Peptidyl-prolyl cis-trans isomerase FKBP1A
Molecular Weight
11950.665 Da
References
  1. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Ligand
General Function
Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals (PubMed:12087098, PubMed:12150925, PubMed:12150926, PubMed:12231510, PubMed:12718876, PubMed:14651849, PubMed:15268862, PubMed:15467718, PubMed:15545625, PubMed:15718470, PubMed:18497260, PubMed:18762023, PubMed:18925875, PubMed:20516213, PubMed:20537536, PubMed:21659604, PubMed:23429703, PubMed:23429704, PubMed:25799227, PubMed:26018084, PubMed:29150432, PubMed:29236692, PubMed:31112131, PubMed:31601708, PubMed:32561715, PubMed:34519269, PubMed:37751742). MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins (PubMed:15268862, PubMed:15467718, PubMed:17517883, PubMed:18372248, PubMed:18497260, PubMed:18925875, PubMed:20516213, PubMed:21576368, PubMed:21659604, PubMed:23429704, PubMed:29236692, PubMed:37751742). Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2) (PubMed:15268862, PubMed:15467718, PubMed:18497260, PubMed:18925875, PubMed:20516213, PubMed:21576368, PubMed:21659604, PubMed:23429704). In response to nutrients, growth factors or amino acids, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis (PubMed:12087098, PubMed:12150925, PubMed:12150926, PubMed:12231510, PubMed:12718876, PubMed:14651849, PubMed:15268862, PubMed:15467718, PubMed:15545625, PubMed:15718470, PubMed:18497260, PubMed:18762023, PubMed:18925875, PubMed:20516213, PubMed:20537536, PubMed:21659604, PubMed:23429703, PubMed:23429704, PubMed:25799227, PubMed:26018084, PubMed:29150432, PubMed:29236692, PubMed:31112131, PubMed:34519269). This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E) (PubMed:24403073, PubMed:29236692). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B, and the inhibitor of translation initiation PDCD4 (PubMed:12087098, PubMed:12150925, PubMed:18925875, PubMed:29150432, PubMed:29236692). Stimulates the pyrimidine biosynthesis pathway, both by acute regulation through RPS6KB1-mediated phosphorylation of the biosynthetic enzyme CAD, and delayed regulation, through transcriptional enhancement of the pentose phosphate pathway which produces 5-phosphoribosyl-1-pyrophosphate (PRPP), an allosteric activator of CAD at a later step in synthesis, this function is dependent on the mTORC1 complex (PubMed:23429703, PubMed:23429704). Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 an RNA polymerase III-repressor (PubMed:20516213). Activates dormant ribosomes by mediating phosphorylation of SERBP1, leading to SERBP1 inactivation and reactivation of translation (PubMed:36691768). In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1 (PubMed:23426360). To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A (By similarity). In the same time, mTORC1 inhibits catabolic pathways: negatively regulates autophagy through phosphorylation of ULK1 (PubMed:32561715). Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-758', disrupting the interaction with AMPK and preventing activation of ULK1 (PubMed:32561715). Also prevents autophagy through phosphorylation of the autophagy inhibitor DAP (PubMed:20537536). Also prevents autophagy by phosphorylating RUBCNL/Pacer under nutrient-rich conditions (PubMed:30704899). Prevents autophagy by mediating phosphorylation of AMBRA1, thereby inhibiting AMBRA1 ability to mediate ubiquitination of ULK1 and interaction between AMBRA1 and PPP2CA (PubMed:23524951, PubMed:25438055). mTORC1 exerts a feedback control on upstream growth factor signaling that includes phosphorylation and activation of GRB10 a INSR-dependent signaling suppressor (PubMed:21659604). Among other potential targets mTORC1 may phosphorylate CLIP1 and regulate microtubules (PubMed:12231510). The mTORC1 complex is inhibited in response to starvation and amino acid depletion (PubMed:12150925, PubMed:12150926, PubMed:24403073, PubMed:31695197). The non-canonical mTORC1 complex, which acts independently of RHEB, specifically mediates phosphorylation of MiT/TFE factors MITF, TFEB and TFE3 in the presence of nutrients, promoting their cytosolic retention and inactivation (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:24448649, PubMed:32612235, PubMed:36608670, PubMed:36697823). Upon starvation or lysosomal stress, inhibition of mTORC1 induces dephosphorylation and nuclear translocation of TFEB and TFE3, promoting their transcription factor activity (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:24448649, PubMed:32612235, PubMed:36608670). The mTORC1 complex regulates pyroptosis in macrophages by promoting GSDMD oligomerization (PubMed:34289345). MTOR phosphorylates RPTOR which in turn inhibits mTORC1 (By similarity). As part of the mTORC2 complex MTOR may regulate other cellular processes including survival and organization of the cytoskeleton (PubMed:15268862, PubMed:15467718). mTORC2 plays a critical role in the phosphorylation at 'Ser-473' of AKT1, a pro-survival effector of phosphoinositide 3-kinase, facilitating its activation by PDK1 (PubMed:15718470). mTORC2 may regulate the actin cytoskeleton, through phosphorylation of PRKCA, PXN and activation of the Rho-type guanine nucleotide exchange factors RHOA and RAC1A or RAC1B (PubMed:15268862). mTORC2 also regulates the phosphorylation of SGK1 at 'Ser-422' (PubMed:18925875). Regulates osteoclastogenesis by adjusting the expression of CEBPB isoforms (By similarity). Plays an important regulatory role in the circadian clock function; regulates period length and rhythm amplitude of the suprachiasmatic nucleus (SCN) and liver clocks (By similarity)
Specific Function
Atp binding
Gene Name
MTOR
Uniprot ID
P42345
Uniprot Name
Serine/threonine-protein kinase mTOR
Molecular Weight
288889.05 Da

Drug created at October 21, 2007 22:23 / Updated at August 26, 2024 19:23