Splicing factor 3B subunit 1

Details

Name
Splicing factor 3B subunit 1
Synonyms
  • Pre-mRNA-splicing factor SF3b 155 kDa subunit
  • SAP 155
  • SAP155
  • SF3b155
  • Spliceosome-associated protein 155
Gene Name
SF3B1
Organism
Humans
Amino acid sequence
>lcl|BSEQ0051617|Splicing factor 3B subunit 1
MAKIAKTHEDIEAQIREIQGKKAALDEAQGVGLDSTGYYDQEIYGGSDSRFAGYVTSIAA
TELEDDDDDYSSSTSLLGQKKPGYHAPVALLNDIPQSTEQYDPFAEHRPPKIADREDEYK
KHRRTMIISPERLDPFADGGKTPDPKMNARTYMDVMREQHLTKEEREIRQQLAEKAKAGE
LKVVNGAAASQPPSKRKRRWDQTADQTPGATPKKLSSWDQAETPGHTPSLRWDETPGRAK
GSETPGATPGSKIWDPTPSHTPAGAATPGRGDTPGHATPGHGGATSSARKNRWDETPKTE
RDTPGHGSGWAETPRTDRGGDSIGETPTPGASKRKSRWDETPASQMGGSTPVLTPGKTPI
GTPAMNMATPTPGHIMSMTPEQLQAWRWEREIDERNRPLSDEELDAMFPEGYKVLPPPAG
YVPIRTPARKLTATPTPLGGMTGFHMQTEDRTMKSVNDQPSGNLPFLKPDDIQYFDKLLV
DVDESTLSPEEQKERKIMKLLLKIKNGTPPMRKAALRQITDKAREFGAGPLFNQILPLLM
SPTLEDQERHLLVKVIDRILYKLDDLVRPYVHKILVVIEPLLIDEDYYARVEGREIISNL
AKAAGLATMISTMRPDIDNMDEYVRNTTARAFAVVASALGIPSLLPFLKAVCKSKKSWQA
RHTGIKIVQQIAILMGCAILPHLRSLVEIIEHGLVDEQQKVRTISALAIAALAEAATPYG
IESFDSVLKPLWKGIRQHRGKGLAAFLKAIGYLIPLMDAEYANYYTREVMLILIREFQSP
DEEMKKIVLKVVKQCCGTDGVEANYIKTEILPPFFKHFWQHRMALDRRNYRQLVDTTVEL
ANKVGAAEIISRIVDDLKDEAEQYRKMVMETIEKIMGNLGAADIDHKLEEQLIDGILYAF
QEQTTEDSVMLNGFGTVVNALGKRVKPYLPQICGTVLWRLNNKSAKVRQQAADLISRTAV
VMKTCQEEKLMGHLGVVLYEYLGEEYPEVLGSILGALKAIVNVIGMHKMTPPIKDLLPRL
TPILKNRHEKVQENCIDLVGRIADRGAEYVSAREWMRICFELLELLKAHKKAIRRATVNT
FGYIAKAIGPHDVLATLLNNLKVQERQNRVCTTVAIAIVAETCSPFTVLPALMNEYRVPE
LNVQNGVLKSLSFLFEYIGEMGKDYIYAVTPLLEDALMDRDLVHRQTASAVVQHMSLGVY
GFGCEDSLNHLLNYVWPNVFETSPHVIQAVMGALEGLRVAIGPCRMLQYCLQGLFHPARK
VRDVYWKIYNSIYIGSQDALIAHYPRIYNDDKNTYIRYELDYIL
Number of residues
1304
Molecular Weight
145829.085
Theoretical pI
Not Available
GO Classification
Functions
mRNA binding / RNA binding
Processes
mRNA splicing, via spliceosome / positive regulation of gene expression, epigenetic / RNA splicing, via transesterification reactions / spliceosomal complex assembly
Components
catalytic step 2 spliceosome / nuclear speck / nucleoplasm / nucleus / spliceosomal complex / U11/U12 snRNP / U12-type spliceosomal complex / U2 snRNP / U2-type prespliceosome
General Function
Involved in pre-mRNA splicing as a component of the splicing factor SF3B complex (PubMed:27720643). SF3B complex is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class of nuclear pre-mRNA intron (PubMed:15146077).
Specific Function
Mrna binding
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Nucleus
Gene sequence
>lcl|BSEQ0051618|Splicing factor 3B subunit 1 (SF3B1)
ATGGCGAAGATCGCCAAGACTCACGAAGATATTGAAGCACAGATTCGAGAAATTCAAGGC
AAGAAGGCAGCTCTTGATGAAGCTCAAGGAGTGGGCCTCGATTCTACAGGTTATTATGAC
CAGGAAATTTATGGTGGAAGTGACAGCAGATTTGCTGGATACGTGACATCAATTGCTGCA
ACTGAACTTGAAGATGATGACGATGACTATTCATCATCTACGAGTTTGCTTGGTCAGAAG
AAGCCAGGATATCATGCCCCTGTGGCATTGCTTAATGATATACCACAGTCAACAGAACAG
TATGATCCATTTGCTGAGCACAGACCTCCAAAGATTGCAGACCGGGAAGATGAATACAAA
AAGCATAGGCGGACCATGATAATTTCCCCAGAGCGTCTTGATCCTTTTGCAGATGGAGGG
AAAACCCCTGATCCTAAAATGAATGCTAGGACTTACATGGATGTAATGCGAGAACAACAC
TTGACTAAAGAAGAACGAGAAATTAGGCAACAGCTAGCAGAAAAAGCTAAAGCTGGAGAA
CTAAAAGTCGTCAATGGAGCAGCAGCGTCCCAGCCTCCATCAAAACGAAAACGGCGTTGG
GATCAAACAGCTGATCAGACTCCTGGTGCCACTCCCAAAAAACTATCAAGTTGGGATCAG
GCAGAGACCCCTGGGCATACTCCTTCCTTAAGATGGGATGAGACACCAGGTCGTGCAAAG
GGAAGCGAGACTCCTGGAGCAACCCCAGGCTCAAAAATATGGGATCCTACACCTAGCCAC
ACACCAGCGGGAGCTGCTACTCCTGGACGAGGTGATACACCAGGCCATGCGACACCAGGC
CATGGAGGCGCAACTTCCAGTGCTCGTAAAAACAGATGGGATGAAACCCCCAAAACAGAG
AGAGATACTCCTGGGCATGGAAGTGGATGGGCTGAGACTCCTCGAACAGATCGAGGTGGA
GATTCTATTGGTGAAACACCGACTCCTGGAGCCAGTAAAAGAAAATCACGGTGGGATGAA
ACACCAGCTAGTCAGATGGGTGGAAGCACTCCAGTTCTGACCCCTGGAAAGACACCAATT
GGCACACCAGCCATGAACATGGCTACCCCTACTCCAGGTCACATAATGAGTATGACTCCT
GAACAGCTTCAGGCTTGGCGGTGGGAAAGAGAAATTGATGAGAGAAATCGCCCACTTTCT
GATGAGGAATTAGATGCTATGTTCCCAGAAGGATATAAGGTACTTCCTCCTCCAGCTGGT
TATGTTCCTATTCGAACTCCAGCTCGAAAGCTGACAGCTACTCCAACACCTTTGGGTGGT
ATGACTGGTTTCCACATGCAAACTGAAGATCGAACTATGAAAAGTGTTAATGACCAGCCA
TCTGGAAATCTTCCATTTTTAAAACCTGATGATATTCAATACTTTGATAAACTATTGGTT
GATGTTGATGAATCAACACTTAGTCCAGAAGAGCAAAAAGAGAGAAAAATAATGAAGTTG
CTTTTAAAAATTAAGAATGGAACACCACCAATGAGAAAGGCTGCATTGCGTCAGATTACT
GATAAAGCTCGTGAATTTGGAGCTGGTCCTTTGTTTAATCAGATTCTTCCTCTGCTGATG
TCTCCTACACTTGAGGATCAAGAGCGTCATTTACTTGTGAAAGTTATTGATAGGATACTG
TACAAACTTGATGACTTAGTTCGTCCATATGTGCATAAGATCCTCGTGGTCATTGAACCG
CTATTGATTGATGAAGATTACTATGCTAGAGTGGAAGGCCGAGAGATCATTTCTAATTTG
GCAAAGGCTGCTGGTCTGGCTACTATGATCTCTACCATGAGACCTGATATAGATAACATG
GATGAGTATGTCCGTAACACAACAGCTAGAGCTTTTGCTGTTGTAGCCTCTGCCCTGGGC
ATTCCTTCTTTATTGCCCTTCTTAAAAGCTGTGTGCAAAAGCAAGAAGTCCTGGCAAGCG
AGACACACTGGTATTAAGATTGTACAACAGATAGCTATTCTTATGGGCTGTGCCATCTTG
CCACATCTTAGAAGTTTAGTTGAAATCATTGAACATGGTCTTGTGGATGAGCAGCAGAAA
GTTCGGACCATCAGTGCTTTGGCCATTGCTGCCTTGGCTGAAGCAGCAACTCCTTATGGT
ATCGAATCTTTTGATTCTGTGTTAAAGCCTTTATGGAAGGGTATCCGCCAACACAGAGGA
AAGGGTTTGGCTGCTTTCTTGAAGGCTATTGGGTATCTTATTCCTCTTATGGATGCAGAA
TATGCCAACTACTATACTAGAGAAGTGATGTTAATCCTTATTCGAGAATTCCAGTCTCCT
GATGAGGAAATGAAAAAAATTGTGCTGAAGGTGGTAAAACAGTGTTGTGGGACAGATGGT
GTAGAAGCAAACTACATTAAAACAGAGATTCTTCCTCCCTTTTTTAAACACTTCTGGCAG
CACAGGATGGCTTTGGATAGAAGAAATTACCGACAGTTAGTTGATACTACTGTGGAGTTG
GCAAACAAAGTAGGTGCAGCAGAAATTATATCCAGGATTGTGGATGATCTGAAAGATGAA
GCCGAACAGTACAGAAAAATGGTGATGGAGACAATTGAGAAAATTATGGGTAATTTGGGA
GCAGCAGATATTGATCATAAACTTGAAGAACAACTGATTGATGGTATTCTTTATGCTTTC
CAAGAACAGACTACAGAGGACTCAGTAATGTTGAACGGCTTTGGCACAGTGGTTAATGCT
CTTGGCAAACGAGTCAAACCATACTTGCCTCAGATCTGTGGTACAGTTTTGTGGCGTTTA
AATAACAAATCTGCTAAAGTTAGGCAACAGGCAGCTGACTTGATTTCTCGAACTGCTGTT
GTCATGAAGACTTGTCAAGAGGAAAAATTGATGGGACACTTGGGTGTTGTATTGTATGAG
TATTTGGGTGAAGAGTACCCTGAAGTATTGGGCAGCATTCTTGGAGCACTGAAGGCCATT
GTAAATGTCATAGGTATGCATAAGATGACTCCACCAATTAAAGATCTGCTGCCTAGACTC
ACCCCCATCTTAAAGAACAGACATGAAAAAGTACAAGAGAATTGTATTGATCTTGTTGGT
CGTATTGCTGACAGGGGAGCTGAATATGTATCTGCAAGAGAGTGGATGAGGATTTGCTTT
GAGCTTTTAGAGCTCTTAAAAGCCCACAAAAAGGCTATTCGTAGAGCCACAGTCAACACA
TTTGGTTATATTGCAAAGGCCATTGGCCCTCATGATGTATTGGCTACACTTCTGAACAAC
CTCAAAGTTCAAGAAAGGCAGAACAGAGTTTGTACCACTGTAGCAATAGCTATTGTTGCA
GAAACATGTTCACCCTTTACAGTACTCCCTGCCTTAATGAATGAATACAGAGTTCCTGAA
CTGAATGTTCAAAATGGAGTGTTAAAATCGCTTTCCTTCTTGTTTGAATATATTGGTGAA
ATGGGAAAAGACTACATTTATGCCGTAACACCGTTACTTGAAGATGCTTTAATGGATAGA
GACCTTGTACACAGACAGACGGCTAGTGCAGTGGTACAGCACATGTCACTTGGGGTTTAT
GGATTTGGTTGTGAAGATTCGCTGAATCACTTGTTGAACTATGTATGGCCCAATGTATTT
GAGACATCTCCTCATGTAATTCAGGCAGTTATGGGAGCCCTAGAGGGCCTGAGAGTTGCT
ATTGGACCATGTAGAATGTTGCAATATTGTTTACAGGGTCTGTTTCACCCAGCCCGGAAA
GTCAGAGATGTATATTGGAAAATTTACAACTCCATCTACATTGGTTCCCAGGACGCTCTC
ATAGCACATTACCCAAGAATCTACAACGATGATAAGAACACCTATATTCGTTATGAACTT
GACTATATCTTATAA
Chromosome Location
2
Locus
2q33.1
External Identifiers
ResourceLink
UniProtKB IDO75533
UniProtKB Entry NameSF3B1_HUMAN
HGNC IDHGNC:10768
General References
  1. Wang C, Chua K, Seghezzi W, Lees E, Gozani O, Reed R: Phosphorylation of spliceosomal protein SAP 155 coupled with splicing catalysis. Genes Dev. 1998 May 15;12(10):1409-14. [Article]
  2. Hillier LW, Graves TA, Fulton RS, Fulton LA, Pepin KH, Minx P, Wagner-McPherson C, Layman D, Wylie K, Sekhon M, Becker MC, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Kremitzki C, Oddy L, Du H, Sun H, Bradshaw-Cordum H, Ali J, Carter J, Cordes M, Harris A, Isak A, van Brunt A, Nguyen C, Du F, Courtney L, Kalicki J, Ozersky P, Abbott S, Armstrong J, Belter EA, Caruso L, Cedroni M, Cotton M, Davidson T, Desai A, Elliott G, Erb T, Fronick C, Gaige T, Haakenson W, Haglund K, Holmes A, Harkins R, Kim K, Kruchowski SS, Strong CM, Grewal N, Goyea E, Hou S, Levy A, Martinka S, Mead K, McLellan MD, Meyer R, Randall-Maher J, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Shah N, Swearengen-Shahid S, Snider J, Strong JT, Thompson J, Yoakum M, Leonard S, Pearman C, Trani L, Radionenko M, Waligorski JE, Wang C, Rock SM, Tin-Wollam AM, Maupin R, Latreille P, Wendl MC, Yang SP, Pohl C, Wallis JW, Spieth J, Bieri TA, Berkowicz N, Nelson JO, Osborne J, Ding L, Meyer R, Sabo A, Shotland Y, Sinha P, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Jones TA, She X, Ciccarelli FD, Izaurralde E, Taylor J, Schmutz J, Myers RM, Cox DR, Huang X, McPherson JD, Mardis ER, Clifton SW, Warren WC, Chinwalla AT, Eddy SR, Marra MA, Ovcharenko I, Furey TS, Miller W, Eichler EE, Bork P, Suyama M, Torrents D, Waterston RH, Wilson RK: Generation and annotation of the DNA sequences of human chromosomes 2 and 4. Nature. 2005 Apr 7;434(7034):724-31. [Article]
  3. Das R, Zhou Z, Reed R: Functional association of U2 snRNP with the ATP-independent spliceosomal complex E. Mol Cell. 2000 May;5(5):779-87. [Article]
  4. Will CL, Urlaub H, Achsel T, Gentzel M, Wilm M, Luhrmann R: Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein. EMBO J. 2002 Sep 16;21(18):4978-88. [Article]
  5. Boudrez A, Beullens M, Waelkens E, Stalmans W, Bollen M: Phosphorylation-dependent interaction between the splicing factors SAP155 and NIPP1. J Biol Chem. 2002 Aug 30;277(35):31834-41. doi: 10.1074/jbc.M204427200. Epub 2002 Jun 24. [Article]
  6. Jurica MS, Licklider LJ, Gygi SR, Grigorieff N, Moore MJ: Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA. 2002 Apr;8(4):426-39. [Article]
  7. Golas MM, Sander B, Will CL, Luhrmann R, Stark H: Molecular architecture of the multiprotein splicing factor SF3b. Science. 2003 May 9;300(5621):980-4. [Article]
  8. Will CL, Schneider C, Hossbach M, Urlaub H, Rauhut R, Elbashir S, Tuschl T, Luhrmann R: The human 18S U11/U12 snRNP contains a set of novel proteins not found in the U2-dependent spliceosome. RNA. 2004 Jun;10(6):929-41. [Article]
  9. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M: Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006 Nov 3;127(3):635-48. [Article]
  10. Cavellan E, Asp P, Percipalle P, Farrants AK: The WSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription. J Biol Chem. 2006 Jun 16;281(24):16264-71. Epub 2006 Apr 9. [Article]
  11. Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP: A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol. 2006 Oct;24(10):1285-92. Epub 2006 Sep 10. [Article]
  12. Yu LR, Zhu Z, Chan KC, Issaq HJ, Dimitrov DS, Veenstra TD: Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra. J Proteome Res. 2007 Nov;6(11):4150-62. Epub 2007 Oct 9. [Article]
  13. Cantin GT, Yi W, Lu B, Park SK, Xu T, Lee JD, Yates JR 3rd: Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res. 2008 Mar;7(3):1346-51. doi: 10.1021/pr0705441. Epub 2008 Jan 26. [Article]
  14. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R, Greff Z, Keri G, Stemmann O, Mann M: Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell. 2008 Aug 8;31(3):438-48. doi: 10.1016/j.molcel.2008.07.007. [Article]
  15. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10762-7. doi: 10.1073/pnas.0805139105. Epub 2008 Jul 31. [Article]
  16. Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S: Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem. 2009 Jun 1;81(11):4493-501. doi: 10.1021/ac9004309. [Article]
  17. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK: Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009 Aug 18;2(84):ra46. doi: 10.1126/scisignal.2000007. [Article]
  18. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009 Aug 14;325(5942):834-40. doi: 10.1126/science.1175371. Epub 2009 Jul 16. [Article]
  19. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475. [Article]
  20. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [Article]
  21. Skourti-Stathaki K, Proudfoot NJ, Gromak N: Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell. 2011 Jun 24;42(6):794-805. doi: 10.1016/j.molcel.2011.04.026. [Article]
  22. Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B: System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal. 2011 Mar 15;4(164):rs3. doi: 10.1126/scisignal.2001570. [Article]
  23. Wang Q, Moore MJ, Adelmant G, Marto JA, Silver PA: PQBP1, a factor linked to intellectual disability, affects alternative splicing associated with neurite outgrowth. Genes Dev. 2013 Mar 15;27(6):615-26. doi: 10.1101/gad.212308.112. [Article]
  24. Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN, Heck AJ, Mohammed S: Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res. 2013 Jan 4;12(1):260-71. doi: 10.1021/pr300630k. Epub 2012 Dec 18. [Article]
  25. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [Article]
  26. Hendriks IA, D'Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC: Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol. 2014 Oct;21(10):927-36. doi: 10.1038/nsmb.2890. Epub 2014 Sep 14. [Article]
  27. Impens F, Radoshevich L, Cossart P, Ribet D: Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli. Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12432-7. doi: 10.1073/pnas.1413825111. Epub 2014 Aug 11. [Article]
  28. Xiao Z, Chang JG, Hendriks IA, Sigurethsson JO, Olsen JV, Vertegaal AC: System-wide Analysis of SUMOylation Dynamics in Response to Replication Stress Reveals Novel Small Ubiquitin-like Modified Target Proteins and Acceptor Lysines Relevant for Genome Stability. Mol Cell Proteomics. 2015 May;14(5):1419-34. doi: 10.1074/mcp.O114.044792. Epub 2015 Mar 9. [Article]
  29. Teng T, Tsai JH, Puyang X, Seiler M, Peng S, Prajapati S, Aird D, Buonamici S, Caleb B, Chan B, Corson L, Feala J, Fekkes P, Gerard B, Karr C, Korpal M, Liu X, T Lowe J, Mizui Y, Palacino J, Park E, Smith PG, Subramanian V, Wu ZJ, Zou J, Yu L, Chicas A, Warmuth M, Larsen N, Zhu P: Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A-SF3b complex. Nat Commun. 2017 May 25;8:15522. doi: 10.1038/ncomms15522. [Article]
  30. Hendriks IA, Lyon D, Young C, Jensen LJ, Vertegaal AC, Nielsen ML: Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat Struct Mol Biol. 2017 Mar;24(3):325-336. doi: 10.1038/nsmb.3366. Epub 2017 Jan 23. [Article]
  31. Schellenberg MJ, Edwards RA, Ritchie DB, Kent OA, Golas MM, Stark H, Luhrmann R, Glover JN, MacMillan AM: Crystal structure of a core spliceosomal protein interface. Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1266-71. doi: 10.1073/pnas.0508048103. Epub 2006 Jan 23. [Article]
  32. Corsini L, Bonnal S, Basquin J, Hothorn M, Scheffzek K, Valcarcel J, Sattler M: U2AF-homology motif interactions are required for alternative splicing regulation by SPF45. Nat Struct Mol Biol. 2007 Jul;14(7):620-9. Epub 2007 Jun 24. [Article]
  33. Schellenberg MJ, Dul EL, MacMillan AM: Structural model of the p14/SF3b155 . branch duplex complex. RNA. 2011 Jan;17(1):155-65. doi: 10.1261/rna.2224411. Epub 2010 Nov 9. [Article]
  34. Loerch S, Maucuer A, Manceau V, Green MR, Kielkopf CL: Cancer-relevant splicing factor CAPERalpha engages the essential splicing factor SF3b155 in a specific ternary complex. J Biol Chem. 2014 Jun 20;289(25):17325-37. doi: 10.1074/jbc.M114.558825. Epub 2014 May 2. [Article]
  35. Cretu C, Schmitzova J, Ponce-Salvatierra A, Dybkov O, De Laurentiis EI, Sharma K, Will CL, Urlaub H, Luhrmann R, Pena V: Molecular Architecture of SF3b and Structural Consequences of Its Cancer-Related Mutations. Mol Cell. 2016 Oct 20;64(2):307-319. doi: 10.1016/j.molcel.2016.08.036. Epub 2016 Oct 6. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB14017H3B-8800investigationalyesinhibitorDetails