Cyclin-dependent kinase 7

Details

Name
Cyclin-dependent kinase 7
Synonyms
  • 2.7.11.22
  • 39 kDa protein kinase
  • CAK
  • CAK1
  • CDK-activating kinase 1
  • CDKN7
  • Cell division protein kinase 7
  • MO15
  • p39 Mo15
  • Serine/threonine-protein kinase 1
  • STK1
  • TFIIH basal transcription factor complex kinase subunit
Gene Name
CDK7
Organism
Humans
Amino acid sequence
>lcl|BSEQ0021853|Cyclin-dependent kinase 7
MALDVKSRAKRYEKLDFLGEGQFATVYKARDKNTNQIVAIKKIKLGHRSEAKDGINRTAL
REIKLLQELSHPNIIGLLDAFGHKSNISLVFDFMETDLEVIIKDNSLVLTPSHIKAYMLM
TLQGLEYLHQHWILHRDLKPNNLLLDENGVLKLADFGLAKSFGSPNRAYTHQVVTRWYRA
PELLFGARMYGVGVDMWAVGCILAELLLRVPFLPGDSDLDQLTRIFETLGTPTEEQWPDM
CSLPDYVTFKSFPGIPLHHIFSAAGDDLLDLIQGLFLFNPCARITATQALKMKYFSNRPG
PTPGCQLPRPNCPVETLKEQSNPALAIKRKRTEALEQGGLPKKLIF
Number of residues
346
Molecular Weight
39038.005
Theoretical pI
8.68
GO Classification
Functions
androgen receptor binding / ATP binding / cyclin-dependent protein serine/threonine kinase activity / DNA-dependent ATPase activity / protein C-terminus binding / protein kinase activity / RNA polymerase II carboxy-terminal domain kinase activity / transcription coactivator activity
Processes
7-methylguanosine mRNA capping / androgen receptor signaling pathway / cell cycle arrest / cell division / cell proliferation / DNA repair / G1/S transition of mitotic cell cycle / G2/M transition of mitotic cell cycle / gene expression / global genome nucleotide-excision repair / mitotic cell cycle / negative regulation of gene expression, epigenetic / nucleotide-excision repair / positive regulation of transcription from RNA polymerase II promoter / positive regulation of transcription, DNA-templated / positive regulation of viral transcription / regulation of cyclin-dependent protein serine/threonine kinase activity / regulation of gene expression, epigenetic / termination of RNA polymerase I transcription / transcription elongation from RNA polymerase I promoter / transcription elongation from RNA polymerase II promoter / transcription from RNA polymerase I promoter / transcription from RNA polymerase II promoter / transcription initiation from RNA polymerase I promoter / transcription initiation from RNA polymerase II promoter / transcription-coupled nucleotide-excision repair / viral process
Components
cytoplasm / holo TFIIH complex / mitochondrion / nucleoplasm / nucleus / perinuclear region of cytoplasm
General Function
Transcription coactivator activity
Specific Function
Serine/threonine kinase involved in cell cycle control and in RNA polymerase II-mediated RNA transcription. Cyclin-dependent kinases (CDKs) are activated by the binding to a cyclin and mediate the progression through the cell cycle. Each different complex controls a specific transition between 2 subsequent phases in the cell cycle. Required for both activation and complex formation of CDK1/cyclin-B during G2-M transition, and for activation of CDK2/cyclins during G1-S transition (but not complex formation). CDK7 is the catalytic subunit of the CDK-activating kinase (CAK) complex. Phosphorylates SPT5/SUPT5H, SF1/NR5A1, POLR2A, p53/TP53, CDK1, CDK2, CDK4, CDK6 and CDK11B/CDK11. CAK activates the cyclin-associated kinases CDK1, CDK2, CDK4 and CDK6 by threonine phosphorylation, thus regulating cell cycle progression. CAK complexed to the core-TFIIH basal transcription factor activates RNA polymerase II by serine phosphorylation of the repetitive C-terminal domain (CTD) of its large subunit (POLR2A), allowing its escape from the promoter and elongation of the transcripts. Phosphorylation of POLR2A in complex with DNA promotes transcription initiation by triggering dissociation from DNA. Its expression and activity are constant throughout the cell cycle. Upon DNA damage, triggers p53/TP53 activation by phosphorylation, but is inactivated in turn by p53/TP53; this feedback loop may lead to an arrest of the cell cycle and of the transcription, helping in cell recovery, or to apoptosis. Required for DNA-bound peptides-mediated transcription and cellular growth inhibition.
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Nucleus
Gene sequence
>lcl|BSEQ0021854|Cyclin-dependent kinase 7 (CDK7)
ATGGCTCTGGACGTGAAGTCTCGGGCAAAGCGTTATGAGAAGCTGGACTTCCTTGGGGAG
GGACAGTTTGCCACCGTTTACAAGGCCAGAGATAAGAACACCAACCAAATTGTCGCCATT
AAGAAAATCAAACTTGGACATAGATCAGAAGCTAAAGATGGTATAAATAGAACCGCCTTA
AGAGAGATAAAATTATTACAGGAGCTAAGTCATCCAAATATAATTGGTCTCCTTGATGCT
TTTGGACATAAATCTAATATTAGCCTTGTCTTTGATTTTATGGAAACTGATCTAGAGGTT
ATAATAAAGGATAATAGTCTTGTGCTGACACCATCACACATCAAAGCCTACATGTTGATG
ACTCTTCAAGGATTAGAATATTTACATCAACATTGGATCCTACATAGGGATCTGAAACCA
AACAACTTGTTGCTAGATGAAAATGGAGTTCTAAAACTGGCAGATTTTGGCCTGGCCAAA
TCTTTTGGGAGCCCCAATAGAGCTTATACACATCAGGTTGTAACCAGGTGGTATCGGGCC
CCCGAGTTACTATTTGGAGCTAGGATGTATGGTGTAGGTGTGGACATGTGGGCTGTTGGC
TGTATATTAGCAGAGTTACTTCTAAGGGTTCCTTTTTTGCCAGGAGATTCAGACCTTGAT
CAGCTAACAAGAATATTTGAAACTTTGGGCACACCAACTGAGGAACAGTGGCCGGACATG
TGTAGTCTTCCAGATTATGTGACATTTAAGAGTTTCCCTGGAATACCTTTGCATCACATC
TTCAGTGCAGCAGGAGACGACTTACTAGATCTCATACAAGGCTTATTCTTATTTAATCCA
TGTGCTCGAATTACGGCCACACAGGCACTGAAAATGAAGTATTTCAGTAATCGGCCAGGG
CCAACACCTGGATGTCAGCTGCCAAGACCAAACTGTCCAGTGGAAACCTTAAAGGAGCAA
TCAAATCCAGCTTTGGCAATAAAAAGGAAAAGAACAGAGGCCTTAGAACAAGGAGGATTG
CCCAAGAAACTAATTTTTTAA
Chromosome Location
5
Locus
5q12.1
External Identifiers
ResourceLink
UniProtKB IDP50613
UniProtKB Entry NameCDK7_HUMAN
GenBank Protein ID485909
GenBank Gene IDX79193
GenAtlas IDCDK7
HGNC IDHGNC:1778
General References
  1. Tassan JP, Schultz SJ, Bartek J, Nigg EA: Cell cycle analysis of the activity, subcellular localization, and subunit composition of human CAK (CDK-activating kinase). J Cell Biol. 1994 Oct;127(2):467-78. [Article]
  2. Levedakou EN, He M, Baptist EW, Craven RJ, Cance WG, Welcsh PL, Simmons A, Naylor SL, Leach RJ, Lewis TB, et al.: Two novel human serine/threonine kinases with homologies to the cell cycle regulating Xenopus MO15, and NIMA kinases: cloning and characterization of their expression pattern. Oncogene. 1994 Jul;9(7):1977-88. [Article]
  3. Darbon JM, Devault A, Taviaux S, Fesquet D, Martinez AM, Galas S, Cavadore JC, Doree M, Blanchard JM: Cloning, expression and subcellular localization of the human homolog of p40MO15 catalytic subunit of cdk-activating kinase. Oncogene. 1994 Nov;9(11):3127-38. [Article]
  4. Wu L, Yee A, Liu L, Carbonaro-Hall D, Venkatesan N, Tolo VT, Hall FL: Molecular cloning of the human CAK1 gene encoding a cyclin-dependent kinase-activating kinase. Oncogene. 1994 Jul;9(7):2089-96. [Article]
  5. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [Article]
  6. Fisher RP, Morgan DO: A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell. 1994 Aug 26;78(4):713-24. [Article]
  7. Ko LJ, Shieh SY, Chen X, Jayaraman L, Tamai K, Taya Y, Prives C, Pan ZQ: p53 is phosphorylated by CDK7-cyclin H in a p36MAT1-dependent manner. Mol Cell Biol. 1997 Dec;17(12):7220-9. [Article]
  8. Akoulitchev S, Reinberg D: The molecular mechanism of mitotic inhibition of TFIIH is mediated by phosphorylation of CDK7. Genes Dev. 1998 Nov 15;12(22):3541-50. [Article]
  9. Kershnar E, Wu SY, Chiang CM: Immunoaffinity purification and functional characterization of human transcription factor IIH and RNA polymerase II from clonal cell lines that conditionally express epitope-tagged subunits of the multiprotein complexes. J Biol Chem. 1998 Dec 18;273(51):34444-53. [Article]
  10. Schneider E, Montenarh M, Wagner P: Regulation of CAK kinase activity by p53. Oncogene. 1998 Nov 26;17(21):2733-41. [Article]
  11. Tirode F, Busso D, Coin F, Egly JM: Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. Mol Cell. 1999 Jan;3(1):87-95. [Article]
  12. Liu J, He L, Collins I, Ge H, Libutti D, Li J, Egly JM, Levens D: The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol Cell. 2000 Feb;5(2):331-41. [Article]
  13. Garrett S, Barton WA, Knights R, Jin P, Morgan DO, Fisher RP: Reciprocal activation by cyclin-dependent kinases 2 and 7 is directed by substrate specificity determinants outside the T loop. Mol Cell Biol. 2001 Jan;21(1):88-99. [Article]
  14. Bicaku E, Patel R, Acevedo-Duncan M: Cyclin-dependent kinase activating kinase/Cdk7 co-localizes with PKC-iota in human glioma cells. Tissue Cell. 2005 Feb;37(1):53-8. Epub 2005 Jan 25. [Article]
  15. Larochelle S, Batliner J, Gamble MJ, Barboza NM, Kraybill BC, Blethrow JD, Shokat KM, Fisher RP: Dichotomous but stringent substrate selection by the dual-function Cdk7 complex revealed by chemical genetics. Nat Struct Mol Biol. 2006 Jan;13(1):55-62. Epub 2005 Dec 4. [Article]
  16. Larochelle S, Merrick KA, Terret ME, Wohlbold L, Barboza NM, Zhang C, Shokat KM, Jallepalli PV, Fisher RP: Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol Cell. 2007 Mar 23;25(6):839-50. [Article]
  17. Lolli G, Johnson LN: Recognition of Cdk2 by Cdk7. Proteins. 2007 Jun 1;67(4):1048-59. [Article]
  18. Cantin GT, Yi W, Lu B, Park SK, Xu T, Lee JD, Yates JR 3rd: Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res. 2008 Mar;7(3):1346-51. doi: 10.1021/pr0705441. Epub 2008 Jan 26. [Article]
  19. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R, Greff Z, Keri G, Stemmann O, Mann M: Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell. 2008 Aug 8;31(3):438-48. doi: 10.1016/j.molcel.2008.07.007. [Article]
  20. Lewis AE, Rusten M, Hoivik EA, Vikse EL, Hansson ML, Wallberg AE, Bakke M: Phosphorylation of steroidogenic factor 1 is mediated by cyclin-dependent kinase 7. Mol Endocrinol. 2008 Jan;22(1):91-104. Epub 2007 Sep 27. [Article]
  21. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10762-7. doi: 10.1073/pnas.0805139105. Epub 2008 Jul 31. [Article]
  22. Akhtar MS, Heidemann M, Tietjen JR, Zhang DW, Chapman RD, Eick D, Ansari AZ: TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol Cell. 2009 May 15;34(3):387-93. doi: 10.1016/j.molcel.2009.04.016. [Article]
  23. Yang WH, Heaton JH, Brevig H, Mukherjee S, Iniguez-Lluhi JA, Hammer GD: SUMOylation inhibits SF-1 activity by reducing CDK7-mediated serine 203 phosphorylation. Mol Cell Biol. 2009 Feb;29(3):613-25. doi: 10.1128/MCB.00295-08. Epub 2008 Nov 17. [Article]
  24. Glover-Cutter K, Larochelle S, Erickson B, Zhang C, Shokat K, Fisher RP, Bentley DL: TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol Cell Biol. 2009 Oct;29(20):5455-64. doi: 10.1128/MCB.00637-09. Epub 2009 Aug 10. [Article]
  25. Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Keri G, Mann M, Daub H: Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics. 2009 Jul;8(7):1751-64. doi: 10.1074/mcp.M800588-MCP200. Epub 2009 Apr 15. [Article]
  26. Lolli G: Binding to DNA of the RNA-polymerase II C-terminal domain allows discrimination between Cdk7 and Cdk9 phosphorylation. Nucleic Acids Res. 2009 Mar;37(4):1260-8. doi: 10.1093/nar/gkn1061. Epub 2009 Jan 9. [Article]
  27. Lv X, Wang J, Dong Z, Lv F, Qin Y: DNA-Bound peptides control the mRNA transcription through CDK7. Peptides. 2009 Apr;30(4):681-8. doi: 10.1016/j.peptides.2008.11.008. Epub 2008 Nov 24. [Article]
  28. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK: Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009 Aug 18;2(84):ra46. doi: 10.1126/scisignal.2000007. [Article]
  29. Timofeev O, Cizmecioglu O, Settele F, Kempf T, Hoffmann I: Cdc25 phosphatases are required for timely assembly of CDK1-cyclin B at the G2/M transition. J Biol Chem. 2010 May 28;285(22):16978-90. doi: 10.1074/jbc.M109.096552. Epub 2010 Apr 1. [Article]
  30. Rogalinska M, Blonski JZ, Komina O, Goralski P, Zolnierczyk JD, Piekarski H, Robak T, Kilianska ZM, Wesierska-Gadek J: R-roscovitine (Seliciclib) affects CLL cells more strongly than combinations of fludarabine or cladribine with cyclophosphamide: Inhibition of CDK7 sensitizes leukemic cells to caspase-dependent apoptosis. J Cell Biochem. 2010 Jan 1;109(1):217-35. doi: 10.1002/jcb.22400. [Article]
  31. Lolli G, Johnson LN: CAK-Cyclin-dependent Activating Kinase: a key kinase in cell cycle control and a target for drugs? Cell Cycle. 2005 Apr;4(4):572-7. Epub 2005 Apr 16. [Article]
  32. Malumbres M, Barbacid M: Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009 Mar;9(3):153-66. doi: 10.1038/nrc2602. [Article]
  33. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475. [Article]
  34. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [Article]
  35. Egly JM, Coin F: A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair (Amst). 2011 Jul 15;10(7):714-21. doi: 10.1016/j.dnarep.2011.04.021. Epub 2011 May 17. [Article]
  36. Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B: System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal. 2011 Mar 15;4(164):rs3. doi: 10.1126/scisignal.2001570. [Article]
  37. Van Damme P, Lasa M, Polevoda B, Gazquez C, Elosegui-Artola A, Kim DS, De Juan-Pardo E, Demeyer K, Hole K, Larrea E, Timmerman E, Prieto J, Arnesen T, Sherman F, Gevaert K, Aldabe R: N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12449-54. doi: 10.1073/pnas.1210303109. Epub 2012 Jul 18. [Article]
  38. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [Article]
  39. Lolli G, Lowe ED, Brown NR, Johnson LN: The crystal structure of human CDK7 and its protein recognition properties. Structure. 2004 Nov;12(11):2067-79. [Article]
  40. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O'Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR: Patterns of somatic mutation in human cancer genomes. Nature. 2007 Mar 8;446(7132):153-8. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB02482PhosphonothreonineexperimentalunknownDetails
DB03496Alvocidibexperimental, investigationalunknownDetails
DB05969SNS-032investigationalunknownDetails
DB06195SeliciclibinvestigationalunknownDetails
DB15442Trilaciclibapproved, investigationalnoinhibitorDetails