Histone acetyltransferase p300

Details

Name
Histone acetyltransferase p300
Synonyms
  • 2.3.1.48
  • E1A-associated protein p300
  • Histone butyryltransferase p300
  • Histone crotonyltransferase p300
  • P300
  • p300 HAT
  • Protein 2-hydroxyisobutyryltransferase p300
  • Protein lactyltransferas p300
  • Protein propionyltransferase p300
Gene Name
EP300
Organism
Humans
Amino acid sequence
>lcl|BSEQ0052659|Histone acetyltransferase p300
MAENVVEPGPPSAKRPKLSSPALSASASDGTDFGSLFDLEHDLPDELINSTELGLTNGGD
INQLQTSLGMVQDAASKHKQLSELLRSGSSPNLNMGVGGPGQVMASQAQQSSPGLGLINS
MVKSPMTQAGLTSPNMGMGTSGPNQGPTQSTGMMNSPVNQPAMGMNTGMNAGMNPGMLAA
GNGQGIMPNQVMNGSIGAGRGRQNMQYPNPGMGSAGNLLTEPLQQGSPQMGGQTGLRGPQ
PLKMGMMNNPNPYGSPYTQNPGQQIGASGLGLQIQTKTVLSNNLSPFAMDKKAVPGGGMP
NMGQQPAPQVQQPGLVTPVAQGMGSGAHTADPEKRKLIQQQLVLLLHAHKCQRREQANGE
VRQCNLPHCRTMKNVLNHMTHCQSGKSCQVAHCASSRQIISHWKNCTRHDCPVCLPLKNA
GDKRNQQPILTGAPVGLGNPSSLGVGQQSAPNLSTVSQIDPSSIERAYAALGLPYQVNQM
PTQPQVQAKNQQNQQPGQSPQGMRPMSNMSASPMGVNGGVGVQTPSLLSDSMLHSAINSQ
NPMMSENASVPSLGPMPTAAQPSTTGIRKQWHEDITQDLRNHLVHKLVQAIFPTPDPAAL
KDRRMENLVAYARKVEGDMYESANNRAEYYHLLAEKIYKIQKELEEKRRTRLQKQNMLPN
AAGMVPVSMNPGPNMGQPQPGMTSNGPLPDPSMIRGSVPNQMMPRITPQSGLNQFGQMSM
AQPPIVPRQTPPLQHHGQLAQPGALNPPMGYGPRMQQPSNQGQFLPQTQFPSQGMNVTNI
PLAPSSGQAPVSQAQMSSSSCPVNSPIMPPGSQGSHIHCPQLPQPALHQNSPSPVPSRTP
TPHHTPPSIGAQQPPATTIPAPVPTPPAMPPGPQSQALHPPPRQTPTPPTTQLPQQVQPS
LPAAPSADQPQQQPRSQQSTAASVPTPTAPLLPPQPATPLSQPAVSIEGQVSNPPSTSST
EVNSQAIAEKQPSQEVKMEAKMEVDQPEPADTQPEDISESKVEDCKMESTETEERSTELK
TEIKEEEDQPSTSATQSSPAPGQSKKKIFKPEELRQALMPTLEALYRQDPESLPFRQPVD
PQLLGIPDYFDIVKSPMDLSTIKRKLDTGQYQEPWQYVDDIWLMFNNAWLYNRKTSRVYK
YCSKLSEVFEQEIDPVMQSLGYCCGRKLEFSPQTLCCYGKQLCTIPRDATYYSYQNRYHF
CEKCFNEIQGESVSLGDDPSQPQTTINKEQFSKRKNDTLDPELFVECTECGRKMHQICVL
HHEIIWPAGFVCDGCLKKSARTRKENKFSAKRLPSTRLGTFLENRVNDFLRRQNHPESGE
VTVRVVHASDKTVEVKPGMKARFVDSGEMAESFPYRTKALFAFEEIDGVDLCFFGMHVQE
YGSDCPPPNQRRVYISYLDSVHFFRPKCLRTAVYHEILIGYLEYVKKLGYTTGHIWACPP
SEGDDYIFHCHPPDQKIPKPKRLQEWYKKMLDKAVSERIVHDYKDIFKQATEDRLTSAKE
LPYFEGDFWPNVLEESIKELEQEEEERKREENTSNESTDVTKGDSKNAKKKNNKKTSKNK
SSLSRGNKKKPGMPNVSNDLSQKLYATMEKHKEVFFVIRLIAGPAANSLPPIVDPDPLIP
CDLMDGRDAFLTLARDKHLEFSSLRRAQWSTMCMLVELHTQSQDRFVYTCNECKHHVETR
WHCTVCEDYDLCITCYNTKNHDHKMEKLGLGLDDESNNQQAAATQSPGDSRRLSIQRCIQ
SLVHACQCRNANCSLPSCQKMKRVVQHTKGCKRKTNGGCPICKQLIALCCYHAKHCQENK
CPVPFCLNIKQKLRQQQLQHRLQQAQMLRRRMASMQRTGVVGQQQGLPSPTPATPTTPTG
QQPTTPQTPQPTSQPQPTPPNSMPPYLPRTQAAGPVSQGKAAGQVTPPTPPQTAQPPLPG
PPPAAVEMAMQIQRAAETQRQMAHVQIFQRPIQHQMPPMTPMAPMGMNPPPMTRGPSGHL
EPGMGPTGMQQQPPWSQGGLPQPQQLQSGMPRPAMMSVAQHGQPLNMAPQPGLGQVGISP
LKPGTVSQQALQNLLRTLRSPSSPLQQQQVLSILHANPQLLAAFIKQRAAKYANSNPQPI
PGQPGMPQGQPGLQPPTMPGQQGVHSNPAMQNMNPMQAGVQRAGLPQQQPQQQLQPPMGG
MSPQAQQMNMNHNTMPSQFRDILRRQQMMQQQQQQGAGPGIGPGMANHNQFQQPQGVGYP
PQQQQRMQHHMQQMQQGNMGQIGQLPQALGAEAGASLQAYQQRLLQQQMGSPVQPNPMSP
QQHMLPNQAQSPHLQGQQIPNSLSNQVRSPQPVPSPRPQSQPPHSSPSPRMQPQPSPHHV
SPQTSSPHPGLVAAQANPMEQGHFASPDQNSMLSQLASNPGMANLHGASATDLGLSTDNS
DLNSNLSQSTLDIH
Number of residues
2414
Molecular Weight
264159.725
Theoretical pI
Not Available
GO Classification
Functions
acetyltransferase activity / activating transcription factor binding / androgen receptor binding / beta-catenin binding / chromatin binding / chromatin DNA binding / damaged DNA binding / DNA binding / H3 histone acetyltransferase activity / H4 histone acetyltransferase activity / histone acetyltransferase activity / histone butyryltransferase activity / histone crotonyltransferase activity / histone lactyltransferase activity / lysine N-acetyltransferase activity, acting on acetyl phosphate as donor / NF-kappaB binding / nuclear hormone receptor binding / p53 binding / peptide 2-hydroxyisobutyryltransferase activity / peptide butyryltransferase activity / pre-mRNA intronic binding / protein C-terminus binding / protein propionyltransferase activity / RNA polymerase II activating transcription factor binding / RNA polymerase II transcription factor binding / STAT family protein binding / tau protein binding / transcription coactivator activity / transcription factor binding / transferase activity, transferring acyl groups / zinc ion binding
Processes
animal organ morphogenesis / apoptotic process / B cell differentiation / behavioral defense response / beta-catenin-TCF complex assembly / cellular response to UV / circadian rhythm / DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest / face morphogenesis / fat cell differentiation / granulocyte differentiation / heart development / histone acetylation / histone H2B acetylation / histone H4 acetylation / internal peptidyl-lysine acetylation / internal protein amino acid acetylation / intracellular receptor signaling pathway / intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator / learning or memory / lung development / macrophage derived foam cell differentiation / megakaryocyte development / multicellular organism growth / N-terminal peptidyl-lysine acetylation / negative regulation of gluconeogenesis / negative regulation of protein-containing complex assembly / negative regulation of transcription by RNA polymerase II / nervous system development / Notch signaling pathway / peptidyl-lysine acetylation / peptidyl-lysine butyrylation / peptidyl-lysine crotonylation / peptidyl-lysine propionylation / platelet formation / positive regulation by host of viral transcription / positive regulation of DNA-binding transcription factor activity / positive regulation of gene expression, epigenetic / positive regulation of neuron projection development / positive regulation of NF-kappaB transcription factor activity / positive regulation of NIK/NF-kappaB signaling / positive regulation of Notch signaling pathway / positive regulation of protein binding / positive regulation of RNA polymerase II regulatory region sequence-specific DNA binding / positive regulation of transcription by RNA polymerase II / positive regulation of transcription from RNA polymerase II promoter involved in unfolded protein response / positive regulation of transcription of Notch receptor target / positive regulation of transcription, DNA-templated / positive regulation of transforming growth factor beta receptor signaling pathway / positive regulation of type I interferon production / protein acetylation / protein destabilization / protein deubiquitination / protein stabilization / regulation of androgen receptor signaling pathway / regulation of autophagy / regulation of cell cycle / regulation of cellular response to heat / regulation of glycolytic process / regulation of megakaryocyte differentiation / regulation of mitochondrion organization / regulation of signal transduction by p53 class mediator / regulation of transcription from RNA polymerase II promoter in response to hypoxia / regulation of transcription, DNA-templated / regulation of tubulin deacetylation / response to estrogen / response to hypoxia / skeletal muscle tissue development / somitogenesis / stimulatory C-type lectin receptor signaling pathway / swimming / thigmotaxis / transcription-coupled nucleotide-excision repair / viral process
Components
chromosome / cytosol / histone acetyltransferase complex / nucleoplasm / nucleus / protein-DNA complex / transcription regulator complex
General Function
Functions as histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes. Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein. Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability. Mediates acetylation of histone H3 at 'Lys-27' (H3K27ac) (PubMed:23911289). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1 or SIRT2 (PubMed:12929931, PubMed:16762839, PubMed:18722353). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement. Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates BCL6 wich disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degragation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950).
Specific Function
Acetyltransferase activity
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Cytoplasm
Gene sequence
>lcl|BSEQ0052660|Histone acetyltransferase p300 (EP300)
ATGGCCGAGAATGTGGTGGAACCGGGGCCGCCTTCAGCCAAGCGGCCTAAACTCTCATCT
CCGGCCCTCTCGGCGTCCGCCAGCGATGGCACAGATTTTGGCTCTCTATTTGACTTGGAG
CACGACTTACCAGATGAATTAATCAACTCTACAGAATTGGGACTAACCAATGGTGGTGAT
ATTAATCAGCTTCAGACAAGTCTTGGCATGGTACAAGATGCAGCTTCTAAACATAAACAG
CTGTCAGAATTGCTGCGATCTGGTAGTTCCCCTAACCTCAATATGGGAGTTGGTGGCCCA
GGTCAAGTCATGGCCAGCCAGGCCCAACAGAGCAGTCCTGGATTAGGTTTGATAAATAGC
ATGGTCAAAAGCCCAATGACACAGGCAGGCTTGACTTCTCCCAACATGGGGATGGGCACT
AGTGGACCAAATCAGGGTCCTACGCAGTCAACAGGTATGATGAACAGTCCAGTAAATCAG
CCTGCCATGGGAATGAACACAGGGATGAATGCGGGCATGAATCCTGGAATGTTGGCTGCA
GGCAATGGACAAGGGATAATGCCTAATCAAGTCATGAACGGTTCAATTGGAGCAGGCCGA
GGGCGACAGAATATGCAGTACCCAAACCCAGGCATGGGAAGTGCTGGCAACTTACTGACT
GAGCCTCTTCAGCAGGGCTCTCCCCAGATGGGAGGACAAACAGGATTGAGAGGCCCCCAG
CCTCTTAAGATGGGAATGATGAACAACCCCAATCCTTATGGTTCACCATATACTCAGAAT
CCTGGACAGCAGATTGGAGCCAGTGGCCTTGGTCTCCAGATTCAGACAAAAACTGTACTA
TCAAATAACTTATCTCCATTTGCTATGGACAAAAAGGCAGTTCCTGGTGGAGGAATGCCC
AACATGGGTCAACAGCCAGCCCCGCAGGTCCAGCAGCCAGGCCTGGTGACTCCAGTTGCC
CAAGGGATGGGTTCTGGAGCACATACAGCTGATCCAGAGAAGCGCAAGCTCATCCAGCAG
CAGCTTGTTCTCCTTTTGCATGCTCACAAGTGCCAGCGCCGGGAACAGGCCAATGGGGAA
GTGAGGCAGTGCAACCTTCCCCACTGTCGCACAATGAAGAATGTCCTAAACCACATGACA
CACTGCCAGTCAGGCAAGTCTTGCCAAGTGGCACACTGTGCATCTTCTCGACAAATCATT
TCACACTGGAAGAATTGTACAAGACATGATTGTCCTGTGTGTCTCCCCCTCAAAAATGCT
GGTGATAAGAGAAATCAACAGCCAATTTTGACTGGAGCACCCGTTGGACTTGGAAATCCT
AGCTCTCTAGGGGTGGGTCAACAGTCTGCCCCCAACCTAAGCACTGTTAGTCAGATTGAT
CCCAGCTCCATAGAAAGAGCCTATGCAGCTCTTGGACTACCCTATCAAGTAAATCAGATG
CCGACACAACCCCAGGTGCAAGCAAAGAACCAGCAGAATCAGCAGCCTGGGCAGTCTCCC
CAAGGCATGCGGCCCATGAGCAACATGAGTGCTAGTCCTATGGGAGTAAATGGAGGTGTA
GGAGTTCAAACGCCGAGTCTTCTTTCTGACTCAATGTTGCATTCAGCCATAAATTCTCAA
AACCCAATGATGAGTGAAAATGCCAGTGTGCCCTCCCTGGGTCCTATGCCAACAGCAGCT
CAACCATCCACTACTGGAATTCGGAAACAGTGGCACGAAGATATTACTCAGGATCTTCGA
AATCATCTTGTTCACAAACTCGTCCAAGCCATATTTCCTACGCCGGATCCTGCTGCTTTA
AAAGACAGACGGATGGAAAACCTAGTTGCATATGCTCGGAAAGTTGAAGGGGACATGTAT
GAATCTGCAAACAATCGAGCGGAATACTACCACCTTCTAGCTGAGAAAATCTATAAGATC
CAGAAAGAACTAGAAGAAAAACGAAGGACCAGACTACAGAAGCAGAACATGCTACCAAAT
GCTGCAGGCATGGTTCCAGTTTCCATGAATCCAGGGCCTAACATGGGACAGCCGCAACCA
GGAATGACTTCTAATGGCCCTCTACCTGACCCAAGTATGATCCGTGGCAGTGTGCCAAAC
CAGATGATGCCTCGAATAACTCCACAATCTGGTTTGAATCAATTTGGCCAGATGAGCATG
GCCCAGCCCCCTATTGTACCCCGGCAAACCCCTCCTCTTCAGCACCATGGACAGTTGGCT
CAACCTGGAGCTCTCAACCCGCCTATGGGCTATGGGCCTCGTATGCAACAGCCTTCCAAC
CAGGGCCAGTTCCTTCCTCAGACTCAGTTCCCATCACAGGGAATGAATGTAACAAATATC
CCTTTGGCTCCGTCCAGCGGTCAAGCTCCAGTGTCTCAAGCACAAATGTCTAGTTCTTCC
TGCCCGGTGAACTCTCCTATAATGCCTCCAGGGTCTCAGGGGAGCCACATTCACTGTCCC
CAGCTTCCTCAACCAGCTCTTCATCAGAATTCACCCTCGCCTGTACCTAGTCGTACCCCC
ACCCCTCACCATACTCCCCCAAGCATAGGGGCTCAGCAGCCACCAGCAACAACAATTCCA
GCCCCTGTTCCTACACCTCCTGCCATGCCACCTGGGCCACAGTCCCAGGCTCTACATCCC
CCTCCAAGGCAGACACCTACACCACCAACAACACAACTTCCCCAACAAGTGCAGCCTTCA
CTTCCTGCTGCACCTTCTGCTGACCAGCCCCAGCAGCAGCCTCGCTCACAGCAGAGCACA
GCAGCGTCTGTTCCTACCCCAACAGCACCGCTGCTTCCTCCGCAGCCTGCAACTCCACTT
TCCCAGCCAGCTGTAAGCATTGAAGGACAGGTATCAAATCCTCCATCTACTAGTAGCACA
GAAGTGAATTCTCAGGCCATTGCTGAGAAGCAGCCTTCCCAGGAAGTGAAGATGGAGGCC
AAAATGGAAGTGGATCAACCAGAACCAGCAGATACTCAGCCGGAGGATATTTCAGAGTCT
AAAGTGGAAGACTGTAAAATGGAATCTACCGAAACAGAAGAGAGAAGCACTGAGTTAAAA
ACTGAAATAAAAGAGGAGGAAGACCAGCCAAGTACTTCAGCTACCCAGTCATCTCCGGCT
CCAGGACAGTCAAAGAAAAAGATTTTCAAACCAGAAGAACTACGACAGGCACTGATGCCA
ACTTTGGAGGCACTTTACCGTCAGGATCCAGAATCCCTTCCCTTTCGTCAACCTGTGGAC
CCTCAGCTTTTAGGAATCCCTGATTACTTTGATATTGTGAAGAGCCCCATGGATCTTTCT
ACCATTAAGAGGAAGTTAGACACTGGACAGTATCAGGAGCCCTGGCAGTATGTCGATGAT
ATTTGGCTTATGTTCAATAATGCCTGGTTATATAACCGGAAAACATCACGGGTATACAAA
TACTGCTCCAAGCTCTCTGAGGTCTTTGAACAAGAAATTGACCCAGTGATGCAAAGCCTT
GGATACTGTTGTGGCAGAAAGTTGGAGTTCTCTCCACAGACACTGTGTTGCTACGGCAAA
CAGTTGTGCACAATACCTCGTGATGCCACTTATTACAGTTACCAGAACAGGTATCATTTC
TGTGAGAAGTGTTTCAATGAGATCCAAGGGGAGAGCGTTTCTTTGGGGGATGACCCTTCC
CAGCCTCAAACTACAATAAATAAAGAACAATTTTCCAAGAGAAAAAATGACACACTGGAT
CCTGAACTGTTTGTTGAATGTACAGAGTGCGGAAGAAAGATGCATCAGATCTGTGTCCTT
CACCATGAGATCATCTGGCCTGCTGGATTCGTCTGTGATGGCTGTTTAAAGAAAAGTGCA
CGAACTAGGAAAGAAAATAAGTTTTCTGCTAAAAGGTTGCCATCTACCAGACTTGGCACC
TTTCTAGAGAATCGTGTGAATGACTTTCTGAGGCGACAGAATCACCCTGAGTCAGGAGAG
GTCACTGTTAGAGTAGTTCATGCTTCTGACAAAACCGTGGAAGTAAAACCAGGCATGAAA
GCAAGGTTTGTGGACAGTGGAGAGATGGCAGAATCCTTTCCATACCGAACCAAAGCCCTC
TTTGCCTTTGAAGAAATTGATGGTGTTGACCTGTGCTTCTTTGGCATGCATGTTCAAGAG
TATGGCTCTGACTGCCCTCCACCCAACCAGAGGAGAGTATACATATCTTACCTCGATAGT
GTTCATTTCTTCCGTCCTAAATGCTTGAGGACTGCAGTCTATCATGAAATCCTAATTGGA
TATTTAGAATATGTCAAGAAATTAGGTTACACAACAGGGCATATTTGGGCATGTCCACCA
AGTGAGGGAGATGATTATATCTTCCATTGCCATCCTCCTGACCAGAAGATACCCAAGCCC
AAGCGACTGCAGGAATGGTACAAAAAAATGCTTGACAAGGCTGTATCAGAGCGTATTGTC
CATGACTACAAGGATATTTTTAAACAAGCTACTGAAGATAGATTAACAAGTGCAAAGGAA
TTGCCTTATTTCGAGGGTGATTTCTGGCCCAATGTTCTGGAAGAAAGCATTAAGGAACTG
GAACAGGAGGAAGAAGAGAGAAAACGAGAGGAAAACACCAGCAATGAAAGCACAGATGTG
ACCAAGGGAGACAGCAAAAATGCTAAAAAGAAGAATAATAAGAAAACCAGCAAAAATAAG
AGCAGCCTGAGTAGGGGCAACAAGAAGAAACCCGGGATGCCCAATGTATCTAACGACCTC
TCACAGAAACTATATGCCACCATGGAGAAGCATAAAGAGGTCTTCTTTGTGATCCGCCTC
ATTGCTGGCCCTGCTGCCAACTCCCTGCCTCCCATTGTTGATCCTGATCCTCTCATCCCC
TGCGATCTGATGGATGGTCGGGATGCGTTTCTCACGCTGGCAAGGGACAAGCACCTGGAG
TTCTCTTCACTCCGAAGAGCCCAGTGGTCCACCATGTGCATGCTGGTGGAGCTGCACACG
CAGAGCCAGGACCGCTTTGTCTACACCTGCAATGAATGCAAGCACCATGTGGAGACACGC
TGGCACTGTACTGTCTGTGAGGATTATGACTTGTGTATCACCTGCTATAACACTAAAAAC
CATGACCACAAAATGGAGAAACTAGGCCTTGGCTTAGATGATGAGAGCAACAACCAGCAG
GCTGCAGCCACCCAGAGCCCAGGCGATTCTCGCCGCCTGAGTATCCAGCGCTGCATCCAG
TCTCTGGTCCATGCTTGCCAGTGTCGGAATGCCAATTGCTCACTGCCATCCTGCCAGAAG
ATGAAGCGGGTTGTGCAGCATACCAAGGGTTGCAAACGGAAAACCAATGGCGGGTGCCCC
ATCTGCAAGCAGCTCATTGCCCTCTGCTGCTACCATGCCAAGCACTGCCAGGAGAACAAA
TGCCCGGTGCCGTTCTGCCTAAACATCAAGCAGAAGCTCCGGCAGCAACAGCTGCAGCAC
CGACTACAGCAGGCCCAAATGCTTCGCAGGAGGATGGCCAGCATGCAGCGGACTGGTGTG
GTTGGGCAGCAACAGGGCCTCCCTTCCCCCACTCCTGCCACTCCAACGACACCAACTGGC
CAACAGCCAACCACCCCGCAGACGCCCCAGCCCACTTCTCAGCCTCAGCCTACCCCTCCC
AATAGCATGCCACCCTACTTGCCCAGGACTCAAGCTGCTGGCCCTGTGTCCCAGGGTAAG
GCAGCAGGCCAGGTGACCCCTCCAACCCCTCCTCAGACTGCTCAGCCACCCCTTCCAGGG
CCCCCACCTGCAGCAGTGGAAATGGCAATGCAGATTCAGAGAGCAGCGGAGACGCAGCGC
CAGATGGCCCACGTGCAAATTTTTCAAAGGCCAATCCAACACCAGATGCCCCCGATGACT
CCCATGGCCCCCATGGGTATGAACCCACCTCCCATGACCAGAGGTCCCAGTGGGCATTTG
GAGCCAGGGATGGGACCGACAGGGATGCAGCAACAGCCACCCTGGAGCCAAGGAGGATTG
CCTCAGCCCCAGCAACTACAGTCTGGGATGCCAAGGCCAGCCATGATGTCAGTGGCCCAG
CATGGTCAACCTTTGAACATGGCTCCACAACCAGGATTGGGCCAGGTAGGTATCAGCCCA
CTCAAACCAGGCACTGTGTCTCAACAAGCCTTACAAAACCTTTTGCGGACTCTCAGGTCT
CCCAGCTCTCCCCTGCAGCAGCAACAGGTGCTTAGTATCCTTCACGCCAACCCCCAGCTG
TTGGCTGCATTCATCAAGCAGCGGGCTGCCAAGTATGCCAACTCTAATCCACAACCCATC
CCTGGGCAGCCTGGCATGCCCCAGGGGCAGCCAGGGCTACAGCCACCTACCATGCCAGGT
CAGCAGGGGGTCCACTCCAATCCAGCCATGCAGAACATGAATCCAATGCAGGCGGGCGTT
CAGAGGGCTGGCCTGCCCCAGCAGCAACCACAGCAGCAACTCCAGCCACCCATGGGAGGG
ATGAGCCCCCAGGCTCAGCAGATGAACATGAACCACAACACCATGCCTTCACAATTCCGA
GACATCTTGAGACGACAGCAAATGATGCAACAGCAGCAGCAACAGGGAGCAGGGCCAGGA
ATAGGCCCTGGAATGGCCAACCATAACCAGTTCCAGCAACCCCAAGGAGTTGGCTACCCA
CCACAGCAGCAGCAGCGGATGCAGCATCACATGCAACAGATGCAACAAGGAAATATGGGA
CAGATAGGCCAGCTTCCCCAGGCCTTGGGAGCAGAGGCAGGTGCCAGTCTACAGGCCTAT
CAGCAGCGACTCCTTCAGCAACAGATGGGGTCCCCTGTTCAGCCCAACCCCATGAGCCCC
CAGCAGCATATGCTCCCAAATCAGGCCCAGTCCCCACACCTACAAGGCCAGCAGATCCCT
AATTCTCTCTCCAATCAAGTGCGCTCTCCCCAGCCTGTCCCTTCTCCACGGCCACAGTCC
CAGCCCCCCCACTCCAGTCCTTCCCCAAGGATGCAGCCTCAGCCTTCTCCACACCACGTT
TCCCCACAGACAAGTTCCCCACATCCTGGACTGGTAGCTGCCCAGGCCAACCCCATGGAA
CAAGGGCATTTTGCCAGCCCGGACCAGAATTCAATGCTTTCTCAGCTTGCTAGCAATCCA
GGCATGGCAAACCTCCATGGTGCAAGCGCCACGGACCTGGGACTCAGCACCGATAACTCA
GACTTGAATTCAAACCTCTCACAGAGTACACTAGACATACACTAG
Chromosome Location
22
Locus
22q13.2
External Identifiers
ResourceLink
UniProtKB IDQ09472
UniProtKB Entry NameEP300_HUMAN
HGNC IDHGNC:3373
General References
  1. Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB, Livingston DM: Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 1994 Apr 15;8(8):869-84. doi: 10.1101/gad.8.8.869. [Article]
  2. Dunham I, Shimizu N, Roe BA, Chissoe S, Hunt AR, Collins JE, Bruskiewich R, Beare DM, Clamp M, Smink LJ, Ainscough R, Almeida JP, Babbage A, Bagguley C, Bailey J, Barlow K, Bates KN, Beasley O, Bird CP, Blakey S, Bridgeman AM, Buck D, Burgess J, Burrill WD, O'Brien KP, et al.: The DNA sequence of human chromosome 22. Nature. 1999 Dec 2;402(6761):489-95. [Article]
  3. Chaffanet M, Gressin L, Preudhomme C, Soenen-Cornu V, Birnbaum D, Pebusque MJ: MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosomes Cancer. 2000 Jun;28(2):138-44. doi: 10.1002/(sici)1098-2264(200006)28:2<138::aid-gcc2>3.0.co;2-2. [Article]
  4. Lundblad JR, Kwok RP, Laurance ME, Harter ML, Goodman RH: Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature. 1995 Mar 2;374(6517):85-8. doi: 10.1038/374085a0. [Article]
  5. Xu W, Chen H, Du K, Asahara H, Tini M, Emerson BM, Montminy M, Evans RM: A transcriptional switch mediated by cofactor methylation. Science. 2001 Dec 21;294(5551):2507-11. doi: 10.1126/science.1065961. Epub 2001 Nov 8. [Article]
  6. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y: The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996 Nov 29;87(5):953-9. [Article]
  7. Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y: A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature. 1996 Jul 25;382(6589):319-24. [Article]
  8. Arany Z, Huang LE, Eckner R, Bhattacharya S, Jiang C, Goldberg MA, Bunn HF, Livingston DM: An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12969-73. [Article]
  9. Bex F, Yin MJ, Burny A, Gaynor RB: Differential transcriptional activation by human T-cell leukemia virus type 1 Tax mutants is mediated by distinct interactions with CREB binding protein and p300. Mol Cell Biol. 1998 Apr;18(4):2392-405. [Article]
  10. Fryer CJ, Archer TK: Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature. 1998 May 7;393(6680):88-91. [Article]
  11. Kiernan RE, Vanhulle C, Schiltz L, Adam E, Xiao H, Maudoux F, Calomme C, Burny A, Nakatani Y, Jeang KT, Benkirane M, Van Lint C: HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J. 1999 Nov 1;18(21):6106-18. doi: 10.1093/emboj/18.21.6106. [Article]
  12. Bhattacharya S, Michels CL, Leung MK, Arany ZP, Kung AL, Livingston DM: Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1. Genes Dev. 1999 Jan 1;13(1):64-75. [Article]
  13. Lau P, Bailey P, Dowhan DH, Muscat GE: Exogenous expression of a dominant negative RORalpha1 vector in muscle cells impairs differentiation: RORalpha1 directly interacts with p300 and myoD. Nucleic Acids Res. 1999 Jan 15;27(2):411-20. [Article]
  14. Yahata T, de Caestecker MP, Lechleider RJ, Andriole S, Roberts AB, Isselbacher KJ, Shioda T: The MSG1 non-DNA-binding transactivator binds to the p300/CBP coactivators, enhancing their functional link to the Smad transcription factors. J Biol Chem. 2000 Mar 24;275(12):8825-34. [Article]
  15. Snowden AW, Anderson LA, Webster GA, Perkins ND: A novel transcriptional repression domain mediates p21(WAF1/CIP1) induction of p300 transactivation. Mol Cell Biol. 2000 Apr;20(8):2676-86. doi: 10.1128/MCB.20.8.2676-2686.2000. [Article]
  16. Miyake S, Sellers WR, Safran M, Li X, Zhao W, Grossman SR, Gan J, DeCaprio JA, Adams PD, Kaelin WG Jr: Cells degrade a novel inhibitor of differentiation with E1A-like properties upon exiting the cell cycle. Mol Cell Biol. 2000 Dec;20(23):8889-902. doi: 10.1128/MCB.20.23.8889-8902.2000. [Article]
  17. MacLellan WR, Xiao G, Abdellatif M, Schneider MD: A novel Rb- and p300-binding protein inhibits transactivation by MyoD. Mol Cell Biol. 2000 Dec;20(23):8903-15. doi: 10.1128/MCB.20.23.8903-8915.2000. [Article]
  18. Ko L, Cardona GR, Chin WW: Thyroid hormone receptor-binding protein, an LXXLL motif-containing protein, functions as a general coactivator. Proc Natl Acad Sci U S A. 2000 May 23;97(11):6212-7. doi: 10.1073/pnas.97.11.6212. [Article]
  19. Deng L, de la Fuente C, Fu P, Wang L, Donnelly R, Wade JD, Lambert P, Li H, Lee CG, Kashanchi F: Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. Virology. 2000 Nov 25;277(2):278-95. doi: 10.1006/viro.2000.0593. [Article]
  20. Yahata T, Shao W, Endoh H, Hur J, Coser KR, Sun H, Ueda Y, Kato S, Isselbacher KJ, Brown M, Shioda T: Selective coactivation of estrogen-dependent transcription by CITED1 CBP/p300-binding protein. Genes Dev. 2001 Oct 1;15(19):2598-612. [Article]
  21. Yang W, Hong YH, Shen XQ, Frankowski C, Camp HS, Leff T: Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors. J Biol Chem. 2001 Oct 19;276(42):38341-4. Epub 2001 Aug 22. [Article]
  22. Xu X, Chackalaparampil I, Monroy MA, Cannella MT, Pesek E, Chrivia J, Yaciuk P: Adenovirus DNA binding protein interacts with the SNF2-related CBP activator protein (SrCap) and inhibits SrCap-mediated transcription. J Virol. 2001 Nov;75(21):10033-40. doi: 10.1128/JVI.75.21.10033-10040.2001. [Article]
  23. Scoggin KE, Ulloa A, Nyborg JK: The oncoprotein Tax binds the SRC-1-interacting domain of CBP/p300 to mediate transcriptional activation. Mol Cell Biol. 2001 Aug;21(16):5520-30. [Article]
  24. Zhang W, Nisbet JW, Albrecht B, Ding W, Kashanchi F, Bartoe JT, Lairmore MD: Human T-lymphotropic virus type 1 p30(II) regulates gene transcription by binding CREB binding protein/p300. J Virol. 2001 Oct;75(20):9885-95. [Article]
  25. Gizard F, Lavallee B, DeWitte F, Hum DW: A novel zinc finger protein TReP-132 interacts with CBP/p300 to regulate human CYP11A1 gene expression. J Biol Chem. 2001 Sep 7;276(36):33881-92. Epub 2001 May 10. [Article]
  26. Vadlamudi RK, Wang RA, Mazumdar A, Kim Y, Shin J, Sahin A, Kumar R: Molecular cloning and characterization of PELP1, a novel human coregulator of estrogen receptor alpha. J Biol Chem. 2001 Oct 12;276(41):38272-9. Epub 2001 Jul 31. [Article]
  27. Yamamoto N, Yamamoto S, Inagaki F, Kawaichi M, Fukamizu A, Kishi N, Matsuno K, Nakamura K, Weinmaster G, Okano H, Nakafuku M: Role of Deltex-1 as a transcriptional regulator downstream of the Notch receptor. J Biol Chem. 2001 Nov 30;276(48):45031-40. doi: 10.1074/jbc.M105245200. Epub 2001 Sep 19. [Article]
  28. Hasan S, Stucki M, Hassa PO, Imhof R, Gehrig P, Hunziker P, Hubscher U, Hottiger MO: Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300. Mol Cell. 2001 Jun;7(6):1221-31. [Article]
  29. Chan HM, Krstic-Demonacos M, Smith L, Demonacos C, La Thangue NB: Acetylation control of the retinoblastoma tumour-suppressor protein. Nat Cell Biol. 2001 Jul;3(7):667-74. doi: 10.1038/35083062. [Article]
  30. Yamamoto H, Kihara-Negishi F, Yamada T, Suzuki M, Nakano T, Oikawa T: Interaction between the hematopoietic Ets transcription factor Spi-B and the coactivator CREB-binding protein associated with negative cross-talk with c-Myb. Cell Growth Differ. 2002 Feb;13(2):69-75. [Article]
  31. Braganca J, Swingler T, Marques FI, Jones T, Eloranta JJ, Hurst HC, Shioda T, Bhattacharya S: Human CREB-binding protein/p300-interacting transactivator with ED-rich tail (CITED) 4, a new member of the CITED family, functions as a co-activator for transcription factor AP-2. J Biol Chem. 2002 Mar 8;277(10):8559-65. Epub 2001 Dec 14. [Article]
  32. Hoffmeister A, Ropolo A, Vasseur S, Mallo GV, Bodeker H, Ritz-Laser B, Dressler GR, Vaccaro MI, Dagorn JC, Moreno S, Iovanna JL: The HMG-I/Y-related protein p8 binds to p300 and Pax2 trans-activation domain-interacting protein to regulate the trans-activation activity of the Pax2A and Pax2B transcription factors on the glucagon gene promoter. J Biol Chem. 2002 Jun 21;277(25):22314-9. doi: 10.1074/jbc.M201657200. Epub 2002 Apr 8. [Article]
  33. Martens JH, Verlaan M, Kalkhoven E, Dorsman JC, Zantema A: Scaffold/matrix attachment region elements interact with a p300-scaffold attachment factor A complex and are bound by acetylated nucleosomes. Mol Cell Biol. 2002 Apr;22(8):2598-606. doi: 10.1128/MCB.22.8.2598-2606.2002. [Article]
  34. Lee YH, Koh SS, Zhang X, Cheng X, Stallcup MR: Synergy among nuclear receptor coactivators: selective requirement for protein methyltransferase and acetyltransferase activities. Mol Cell Biol. 2002 Jun;22(11):3621-32. doi: 10.1128/MCB.22.11.3621-3632.2002. [Article]
  35. Bereshchenko OR, Gu W, Dalla-Favera R: Acetylation inactivates the transcriptional repressor BCL6. Nat Genet. 2002 Dec;32(4):606-13. Epub 2002 Oct 28. [Article]
  36. Shiseki M, Nagashima M, Pedeux RM, Kitahama-Shiseki M, Miura K, Okamura S, Onogi H, Higashimoto Y, Appella E, Yokota J, Harris CC: p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res. 2003 May 15;63(10):2373-8. [Article]
  37. Hecht A, Stemmler MP: Identification of a promoter-specific transcriptional activation domain at the C terminus of the Wnt effector protein T-cell factor 4. J Biol Chem. 2003 Feb 7;278(6):3776-85. doi: 10.1074/jbc.M210081200. Epub 2002 Nov 22. [Article]
  38. Braganca J, Eloranta JJ, Bamforth SD, Ibbitt JC, Hurst HC, Bhattacharya S: Physical and functional interactions among AP-2 transcription factors, p300/CREB-binding protein, and CITED2. J Biol Chem. 2003 May 2;278(18):16021-9. Epub 2003 Feb 12. [Article]
  39. Tsuda M, Takahashi S, Takahashi Y, Asahara H: Transcriptional co-activators CREB-binding protein and p300 regulate chondrocyte-specific gene expression via association with Sox9. J Biol Chem. 2003 Jul 18;278(29):27224-9. doi: 10.1074/jbc.M303471200. Epub 2003 May 5. [Article]
  40. Ammanamanchi S, Freeman JW, Brattain MG: Acetylated sp3 is a transcriptional activator. J Biol Chem. 2003 Sep 12;278(37):35775-80. Epub 2003 Jun 30. [Article]
  41. Iioka T, Furukawa K, Yamaguchi A, Shindo H, Yamashita S, Tsukazaki T: P300/CBP acts as a coactivator to cartilage homeoprotein-1 (Cart1), paired-like homeoprotein, through acetylation of the conserved lysine residue adjacent to the homeodomain. J Bone Miner Res. 2003 Aug;18(8):1419-29. [Article]
  42. Fujii Y, Kumatori A, Nakamura M: SATB1 makes a complex with p300 and represses gp91(phox) promoter activity. Microbiol Immunol. 2003;47(10):803-11. doi: 10.1111/j.1348-0421.2003.tb03438.x. [Article]
  43. Girdwood D, Bumpass D, Vaughan OA, Thain A, Anderson LA, Snowden AW, Garcia-Wilson E, Perkins ND, Hay RT: P300 transcriptional repression is mediated by SUMO modification. Mol Cell. 2003 Apr;11(4):1043-54. doi: 10.1016/s1097-2765(03)00141-2. [Article]
  44. Rossow KL, Janknecht R: Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300. Oncogene. 2003 Jan 9;22(1):151-6. [Article]
  45. An W, Kim J, Roeder RG: Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell. 2004 Jun 11;117(6):735-48. [Article]
  46. Thevenet L, Mejean C, Moniot B, Bonneaud N, Galeotti N, Aldrian-Herrada G, Poulat F, Berta P, Benkirane M, Boizet-Bonhoure B: Regulation of human SRY subcellular distribution by its acetylation/deacetylation. EMBO J. 2004 Aug 18;23(16):3336-45. Epub 2004 Aug 5. [Article]
  47. Curtis AM, Seo SB, Westgate EJ, Rudic RD, Smyth EM, Chakravarti D, FitzGerald GA, McNamara P: Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J Biol Chem. 2004 Feb 20;279(8):7091-7. Epub 2003 Nov 26. [Article]
  48. Wang H, Fang R, Cho JY, Libermann TA, Oettgen P: Positive and negative modulation of the transcriptional activity of the ETS factor ESE-1 through interaction with p300, CREB-binding protein, and Ku 70/86. J Biol Chem. 2004 Jun 11;279(24):25241-50. Epub 2004 Apr 8. [Article]
  49. Dornan D, Eckert M, Wallace M, Shimizu H, Ramsay E, Hupp TR, Ball KL: Interferon regulatory factor 1 binding to p300 stimulates DNA-dependent acetylation of p53. Mol Cell Biol. 2004 Nov;24(22):10083-98. [Article]
  50. Thompson PR, Wang D, Wang L, Fulco M, Pediconi N, Zhang D, An W, Ge Q, Roeder RG, Wong J, Levrero M, Sartorelli V, Cotter RJ, Cole PA: Regulation of the p300 HAT domain via a novel activation loop. Nat Struct Mol Biol. 2004 Apr;11(4):308-15. doi: 10.1038/nsmb740. Epub 2004 Mar 7. [Article]
  51. Kim JY, Chu K, Kim HJ, Seong HA, Park KC, Sanyal S, Takeda J, Ha H, Shong M, Tsai MJ, Choi HS: Orphan nuclear receptor small heterodimer partner, a novel corepressor for a basic helix-loop-helix transcription factor BETA2/neuroD. Mol Endocrinol. 2004 Apr;18(4):776-90. doi: 10.1210/me.2003-0311. Epub 2004 Jan 29. [Article]
  52. Aizawa H, Hu SC, Bobb K, Balakrishnan K, Ince G, Gurevich I, Cowan M, Ghosh A: Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science. 2004 Jan 9;303(5655):197-202. [Article]
  53. Roelfsema JH, White SJ, Ariyurek Y, Bartholdi D, Niedrist D, Papadia F, Bacino CA, den Dunnen JT, van Ommen GJ, Breuning MH, Hennekam RC, Peters DJ: Genetic heterogeneity in Rubinstein-Taybi syndrome: mutations in both the CBP and EP300 genes cause disease. Am J Hum Genet. 2005 Apr;76(4):572-80. Epub 2005 Feb 10. [Article]
  54. Bouras T, Fu M, Sauve AA, Wang F, Quong AA, Perkins ND, Hay RT, Gu W, Pestell RG: SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem. 2005 Mar 18;280(11):10264-76. doi: 10.1074/jbc.M408748200. Epub 2005 Jan 4. [Article]
  55. Lassot I, Estrabaud E, Emiliani S, Benkirane M, Benarous R, Margottin-Goguet F: p300 modulates ATF4 stability and transcriptional activity independently of its acetyltransferase domain. J Biol Chem. 2005 Dec 16;280(50):41537-45. doi: 10.1074/jbc.M505294200. Epub 2005 Oct 11. [Article]
  56. Perrot V, Rechler MM: The coactivator p300 directly acetylates the forkhead transcription factor Foxo1 and stimulates Foxo1-induced transcription. Mol Endocrinol. 2005 Sep;19(9):2283-98. Epub 2005 May 12. [Article]
  57. Lee YH, Coonrod SA, Kraus WL, Jelinek MA, Stallcup MR: Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3611-6. Epub 2005 Feb 24. [Article]
  58. Cismasiu VB, Ghanta S, Duque J, Albu DI, Chen HM, Kasturi R, Avram D: BCL11B participates in the activation of IL2 gene expression in CD4+ T lymphocytes. Blood. 2006 Oct 15;108(8):2695-702. doi: 10.1182/blood-2006-05-021790. Epub 2006 Jun 29. [Article]
  59. Tanaka T, Nishimura D, Wu RC, Amano M, Iso T, Kedes L, Nishida H, Kaibuchi K, Hamamori Y: Nuclear Rho kinase, ROCK2, targets p300 acetyltransferase. J Biol Chem. 2006 Jun 2;281(22):15320-9. Epub 2006 Mar 30. [Article]
  60. Shi G, Boyle SC, Sparrow DB, Dunwoodie SL, Shioda T, de Caestecker MP: The transcriptional activity of CITED1 is regulated by phosphorylation in a cell cycle-dependent manner. J Biol Chem. 2006 Sep 15;281(37):27426-35. doi: 10.1074/jbc.M602631200. Epub 2006 Jul 24. [Article]
  61. Karanam B, Jiang L, Wang L, Kelleher NL, Cole PA: Kinetic and mass spectrometric analysis of p300 histone acetyltransferase domain autoacetylation. J Biol Chem. 2006 Dec 29;281(52):40292-301. doi: 10.1074/jbc.M608813200. Epub 2006 Oct 25. [Article]
  62. Qiu Y, Zhao Y, Becker M, John S, Parekh BS, Huang S, Hendarwanto A, Martinez ED, Chen Y, Lu H, Adkins NL, Stavreva DA, Wiench M, Georgel PT, Schiltz RL, Hager GL: HDAC1 acetylation is linked to progressive modulation of steroid receptor-induced gene transcription. Mol Cell. 2006 Jun 9;22(5):669-79. doi: 10.1016/j.molcel.2006.04.019. [Article]
  63. Hung JJ, Wang YT, Chang WC: Sp1 deacetylation induced by phorbol ester recruits p300 to activate 12(S)-lipoxygenase gene transcription. Mol Cell Biol. 2006 Mar;26(5):1770-85. [Article]
  64. Gururaj AE, Singh RR, Rayala SK, Holm C, den Hollander P, Zhang H, Balasenthil S, Talukder AH, Landberg G, Kumar R: MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6670-5. Epub 2006 Apr 14. [Article]
  65. Ohoka N, Hattori T, Kitagawa M, Onozaki K, Hayashi H: Critical and functional regulation of CHOP (C/EBP homologous protein) through the N-terminal portion. J Biol Chem. 2007 Dec 7;282(49):35687-94. Epub 2007 Sep 14. [Article]
  66. Shin S, Janknecht R: Concerted activation of the Mdm2 promoter by p72 RNA helicase and the coactivators p300 and P/CAF. J Cell Biochem. 2007 Aug 1;101(5):1252-65. [Article]
  67. Chen Y, Sprung R, Tang Y, Ball H, Sangras B, Kim SC, Falck JR, Peng J, Gu W, Zhao Y: Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics. 2007 May;6(5):812-9. doi: 10.1074/mcp.M700021-MCP200. Epub 2007 Jan 30. [Article]
  68. Zhao WX, Tian M, Zhao BX, Li GD, Liu B, Zhan YY, Chen HZ, Wu Q: Orphan receptor TR3 attenuates the p300-induced acetylation of retinoid X receptor-alpha. Mol Endocrinol. 2007 Dec;21(12):2877-89. doi: 10.1210/me.2007-0107. Epub 2007 Aug 30. [Article]
  69. Han Y, Jin YH, Kim YJ, Kang BY, Choi HJ, Kim DW, Yeo CY, Lee KY: Acetylation of Sirt2 by p300 attenuates its deacetylase activity. Biochem Biophys Res Commun. 2008 Oct 31;375(4):576-80. doi: 10.1016/j.bbrc.2008.08.042. Epub 2008 Aug 21. [Article]
  70. Wee HJ, Voon DC, Bae SC, Ito Y: PEBP2-beta/CBF-beta-dependent phosphorylation of RUNX1 and p300 by HIPK2: implications for leukemogenesis. Blood. 2008 Nov 1;112(9):3777-87. doi: 10.1182/blood-2008-01-134122. Epub 2008 Aug 11. [Article]
  71. Clerc I, Polakowski N, Andre-Arpin C, Cook P, Barbeau B, Mesnard JM, Lemasson I: An interaction between the human T cell leukemia virus type 1 basic leucine zipper factor (HBZ) and the KIX domain of p300/CBP contributes to the down-regulation of tax-dependent viral transcription by HBZ. J Biol Chem. 2008 Aug 29;283(35):23903-13. doi: 10.1074/jbc.M803116200. Epub 2008 Jul 2. [Article]
  72. Shima Y, Shima T, Chiba T, Irimura T, Pandolfi PP, Kitabayashi I: PML activates transcription by protecting HIPK2 and p300 from SCFFbx3-mediated degradation. Mol Cell Biol. 2008 Dec;28(23):7126-38. doi: 10.1128/MCB.00897-08. Epub 2008 Sep 22. [Article]
  73. Black JC, Mosley A, Kitada T, Washburn M, Carey M: The SIRT2 deacetylase regulates autoacetylation of p300. Mol Cell. 2008 Nov 7;32(3):449-55. doi: 10.1016/j.molcel.2008.09.018. [Article]
  74. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10762-7. doi: 10.1073/pnas.0805139105. Epub 2008 Jul 31. [Article]
  75. Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S: Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem. 2009 Jun 1;81(11):4493-501. doi: 10.1021/ac9004309. [Article]
  76. Huang C, Han Y, Wang Y, Sun X, Yan S, Yeh ET, Chen Y, Cang H, Li H, Shi G, Cheng J, Tang X, Yi J: SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation. EMBO J. 2009 Sep 16;28(18):2748-62. doi: 10.1038/emboj.2009.210. Epub 2009 Aug 13. [Article]
  77. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK: Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009 Aug 18;2(84):ra46. doi: 10.1126/scisignal.2000007. [Article]
  78. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009 Aug 14;325(5942):834-40. doi: 10.1126/science.1175371. Epub 2009 Jul 16. [Article]
  79. Pickard A, Wong PP, McCance DJ: Acetylation of Rb by PCAF is required for nuclear localization and keratinocyte differentiation. J Cell Sci. 2010 Nov 1;123(Pt 21):3718-26. doi: 10.1242/jcs.068924. Epub 2010 Oct 12. [Article]
  80. Zhang M, Zhang J, Rui J, Liu X: p300-mediated acetylation stabilizes the Th-inducing POK factor. J Immunol. 2010 Oct 1;185(7):3960-9. doi: 10.4049/jimmunol.1001462. Epub 2010 Sep 1. [Article]
  81. Sunagawa Y, Morimoto T, Takaya T, Kaichi S, Wada H, Kawamura T, Fujita M, Shimatsu A, Kita T, Hasegawa K: Cyclin-dependent kinase-9 is a component of the p300/GATA4 complex required for phenylephrine-induced hypertrophy in cardiomyocytes. J Biol Chem. 2010 Mar 26;285(13):9556-68. doi: 10.1074/jbc.M109.070458. Epub 2010 Jan 17. [Article]
  82. Chini CC, Escande C, Nin V, Chini EN: HDAC3 is negatively regulated by the nuclear protein DBC1. J Biol Chem. 2010 Dec 24;285(52):40830-7. doi: 10.1074/jbc.M110.153270. Epub 2010 Oct 28. [Article]
  83. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [Article]
  84. Wang FM, Chen YJ, Ouyang HJ: Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation. Biochem J. 2011 Jan 1;433(1):245-52. doi: 10.1042/BJ20101293. [Article]
  85. Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B: System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal. 2011 Mar 15;4(164):rs3. doi: 10.1126/scisignal.2001570. [Article]
  86. Bienvenut WV, Sumpton D, Martinez A, Lilla S, Espagne C, Meinnel T, Giglione C: Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features. Mol Cell Proteomics. 2012 Jun;11(6):M111.015131. doi: 10.1074/mcp.M111.015131. Epub 2012 Jan 5. [Article]
  87. Bjornstad LG, Meza TJ, Otterlei M, Olafsrud SM, Meza-Zepeda LA, Falnes PO: Human ALKBH4 interacts with proteins associated with transcription. PLoS One. 2012;7(11):e49045. doi: 10.1371/journal.pone.0049045. Epub 2012 Nov 8. [Article]
  88. Tropberger P, Pott S, Keller C, Kamieniarz-Gdula K, Caron M, Richter F, Li G, Mittler G, Liu ET, Buhler M, Margueron R, Schneider R: Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell. 2013 Feb 14;152(4):859-72. doi: 10.1016/j.cell.2013.01.032. [Article]
  89. Hatzi K, Jiang Y, Huang C, Garrett-Bakelman F, Gearhart MD, Giannopoulou EG, Zumbo P, Kirouac K, Bhaskara S, Polo JM, Kormaksson M, MacKerell AD Jr, Xue F, Mason CE, Hiebert SW, Prive GG, Cerchietti L, Bardwell VJ, Elemento O, Melnick A: A hybrid mechanism of action for BCL6 in B cells defined by formation of functionally distinct complexes at enhancers and promoters. Cell Rep. 2013 Aug 15;4(3):578-88. doi: 10.1016/j.celrep.2013.06.016. Epub 2013 Aug 1. [Article]
  90. Lu Y, Zhang L, Liao X, Sangwung P, Prosdocimo DA, Zhou G, Votruba AR, Brian L, Han YJ, Gao H, Wang Y, Shimizu K, Weinert-Stein K, Khrestian M, Simon DI, Freedman NJ, Jain MK: Kruppel-like factor 15 is critical for vascular inflammation. J Clin Invest. 2013 Oct;123(10):4232-41. doi: 10.1172/JCI68552. Epub 2013 Sep 3. [Article]
  91. Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN, Heck AJ, Mohammed S: Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res. 2013 Jan 4;12(1):260-71. doi: 10.1021/pr300630k. Epub 2012 Dec 18. [Article]
  92. Kang HJ, Lee MH, Kang HL, Kim SH, Ahn JR, Na H, Na TY, Kim YN, Seong JK, Lee MO: Differential regulation of estrogen receptor alpha expression in breast cancer cells by metastasis-associated protein 1. Cancer Res. 2014 Mar 1;74(5):1484-94. doi: 10.1158/0008-5472.CAN-13-2020. Epub 2014 Jan 10. [Article]
  93. Feng Y, Wu H, Xu Y, Zhang Z, Liu T, Lin X, Feng XH: Zinc finger protein 451 is a novel Smad corepressor in transforming growth factor-beta signaling. J Biol Chem. 2014 Jan 24;289(4):2072-83. doi: 10.1074/jbc.M113.526905. Epub 2013 Dec 9. [Article]
  94. Yoon JH, Choi WI, Jeon BN, Koh DI, Kim MK, Kim MH, Kim J, Hur SS, Kim KS, Hur MW: Human Kruppel-related 3 (HKR3) is a novel transcription activator of alternate reading frame (ARF) gene. J Biol Chem. 2014 Feb 14;289(7):4018-31. doi: 10.1074/jbc.M113.526855. Epub 2014 Jan 1. [Article]
  95. Rack JG, VanLinden MR, Lutter T, Aasland R, Ziegler M: Constitutive nuclear localization of an alternatively spliced sirtuin-2 isoform. J Mol Biol. 2014 Apr 17;426(8):1677-91. doi: 10.1016/j.jmb.2013.10.027. Epub 2013 Oct 29. [Article]
  96. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [Article]
  97. Yoo HM, Kang SH, Kim JY, Lee JE, Seong MW, Lee SW, Ka SH, Sou YS, Komatsu M, Tanaka K, Lee ST, Noh DY, Baek SH, Jeon YJ, Chung CH: Modification of ASC1 by UFM1 is crucial for ERalpha transactivation and breast cancer development. Mol Cell. 2014 Oct 23;56(2):261-74. doi: 10.1016/j.molcel.2014.08.007. Epub 2014 Sep 11. [Article]
  98. Cazzalini O, Sommatis S, Tillhon M, Dutto I, Bachi A, Rapp A, Nardo T, Scovassi AI, Necchi D, Cardoso MC, Stivala LA, Prosperi E: CBP and p300 acetylate PCNA to link its degradation with nucleotide excision repair synthesis. Nucleic Acids Res. 2014 Jul;42(13):8433-48. doi: 10.1093/nar/gku533. Epub 2014 Jun 17. [Article]
  99. Jeon BN, Kim MK, Yoon JH, Kim MY, An H, Noh HJ, Choi WI, Koh DI, Hur MW: Two ZNF509 (ZBTB49) isoforms induce cell-cycle arrest by activating transcription of p21/CDKN1A and RB upon exposure to genotoxic stress. Nucleic Acids Res. 2014 Oct;42(18):11447-61. doi: 10.1093/nar/gku857. Epub 2014 Sep 22. [Article]
  100. Yang Y, Cui J, Xue F, Zhang C, Mei Z, Wang Y, Bi M, Shan D, Meredith A, Li H, Xu ZQ: Pokemon (FBI-1) interacts with Smad4 to repress TGF-beta-induced transcriptional responses. Biochim Biophys Acta. 2015 Mar;1849(3):270-81. doi: 10.1016/j.bbagrm.2014.12.008. Epub 2014 Dec 13. [Article]
  101. Sabari BR, Tang Z, Huang H, Yong-Gonzalez V, Molina H, Kong HE, Dai L, Shimada M, Cross JR, Zhao Y, Roeder RG, Allis CD: Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell. 2015 Apr 16;58(2):203-15. doi: 10.1016/j.molcel.2015.02.029. Epub 2015 Mar 26. [Article]
  102. Zhang Y, Mao D, Roswit WT, Jin X, Patel AC, Patel DA, Agapov E, Wang Z, Tidwell RM, Atkinson JJ, Huang G, McCarthy R, Yu J, Yun NE, Paessler S, Lawson TG, Omattage NS, Brett TJ, Holtzman MJ: PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection. Nat Immunol. 2015 Dec;16(12):1215-27. doi: 10.1038/ni.3279. Epub 2015 Oct 19. [Article]
  103. Punwani D, Zhang Y, Yu J, Cowan MJ, Rana S, Kwan A, Adhikari AN, Lizama CO, Mendelsohn BA, Fahl SP, Chellappan A, Srinivasan R, Brenner SE, Wiest DL, Puck JM: Multisystem Anomalies in Severe Combined Immunodeficiency with Mutant BCL11B. N Engl J Med. 2016 Dec 1;375(22):2165-2176. doi: 10.1056/NEJMoa1509164. [Article]
  104. Choi SH, Gearhart MD, Cui Z, Bosnakovski D, Kim M, Schennum N, Kyba M: DUX4 recruits p300/CBP through its C-terminus and induces global H3K27 acetylation changes. Nucleic Acids Res. 2016 Jun 20;44(11):5161-73. doi: 10.1093/nar/gkw141. Epub 2016 Mar 6. [Article]
  105. Pan XY, Zhao W, Zeng XY, Lin J, Li MM, Shen XT, Liu SW: Heat Shock Factor 1 Mediates Latent HIV Reactivation. Sci Rep. 2016 May 18;6:26294. doi: 10.1038/srep26294. [Article]
  106. Tsai TY, Wang WT, Li HK, Chen WJ, Tsai YH, Chao CH, Wu Lee YH: RNA helicase DDX3 maintains lipid homeostasis through upregulation of the microsomal triglyceride transfer protein by interacting with HNF4 and SHP. Sci Rep. 2017 Jan 27;7:41452. doi: 10.1038/srep41452. [Article]
  107. Huang H, Tang S, Ji M, Tang Z, Shimada M, Liu X, Qi S, Locasale JW, Roeder RG, Zhao Y, Li X: p300-Mediated Lysine 2-Hydroxyisobutyrylation Regulates Glycolysis. Mol Cell. 2018 May 17;70(4):663-678.e6. doi: 10.1016/j.molcel.2018.04.011. [Article]
  108. Latorre-Muro P, Baeza J, Armstrong EA, Hurtado-Guerrero R, Corzana F, Wu LE, Sinclair DA, Lopez-Buesa P, Carrodeguas JA, Denu JM: Dynamic Acetylation of Phosphoenolpyruvate Carboxykinase Toggles Enzyme Activity between Gluconeogenic and Anaplerotic Reactions. Mol Cell. 2018 Sep 6;71(5):718-732.e9. doi: 10.1016/j.molcel.2018.07.031. [Article]
  109. Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, Ding J, Czyz D, Hu R, Ye Z, He M, Zheng YG, Shuman HA, Dai L, Ren B, Roeder RG, Becker L, Zhao Y: Metabolic regulation of gene expression by histone lactylation. Nature. 2019 Oct;574(7779):575-580. doi: 10.1038/s41586-019-1678-1. Epub 2019 Oct 23. [Article]
  110. Freedman SJ, Sun ZY, Poy F, Kung AL, Livingston DM, Wagner G, Eck MJ: Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5367-72. [Article]
  111. Freedman SJ, Sun ZY, Kung AL, France DS, Wagner G, Eck MJ: Structural basis for negative regulation of hypoxia-inducible factor-1alpha by CITED2. Nat Struct Biol. 2003 Jul;10(7):504-12. [Article]
  112. Liu X, Wang L, Zhao K, Thompson PR, Hwang Y, Marmorstein R, Cole PA: The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature. 2008 Feb 14;451(7180):846-50. doi: 10.1038/nature06546. [Article]
  113. Feng H, Jenkins LM, Durell SR, Hayashi R, Mazur SJ, Cherry S, Tropea JE, Miller M, Wlodawer A, Appella E, Bai Y: Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure. 2009 Feb 13;17(2):202-10. doi: 10.1016/j.str.2008.12.009. [Article]
  114. Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Muller S, Pawson T, Gingras AC, Arrowsmith CH, Knapp S: Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012 Mar 30;149(1):214-31. doi: 10.1016/j.cell.2012.02.013. [Article]
  115. Delvecchio M, Gaucher J, Aguilar-Gurrieri C, Ortega E, Panne D: Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation. Nat Struct Mol Biol. 2013 Sep;20(9):1040-6. doi: 10.1038/nsmb.2642. Epub 2013 Aug 11. [Article]
  116. Maksimoska J, Segura-Pena D, Cole PA, Marmorstein R: Structure of the p300 histone acetyltransferase bound to acetyl-coenzyme A and its analogues. Biochemistry. 2014 Jun 3;53(21):3415-22. doi: 10.1021/bi500380f. Epub 2014 May 21. [Article]
  117. Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF, Daigo Y, Russell P, Wilson A, Sowter HM, Delhanty JD, Ponder BA, Kouzarides T, Caldas C: Mutations truncating the EP300 acetylase in human cancers. Nat Genet. 2000 Mar;24(3):300-3. doi: 10.1038/73536. [Article]
  118. Negri G, Milani D, Colapietro P, Forzano F, Della Monica M, Rusconi D, Consonni L, Caffi LG, Finelli P, Scarano G, Magnani C, Selicorni A, Spena S, Larizza L, Gervasini C: Clinical and molecular characterization of Rubinstein-Taybi syndrome patients carrying distinct novel mutations of the EP300 gene. Clin Genet. 2015 Feb;87(2):148-54. doi: 10.1111/cge.12348. Epub 2014 Feb 17. [Article]
  119. Nibbeling EAR, Duarri A, Verschuuren-Bemelmans CC, Fokkens MR, Karjalainen JM, Smeets CJLM, de Boer-Bergsma JJ, van der Vries G, Dooijes D, Bampi GB, van Diemen C, Brunt E, Ippel E, Kremer B, Vlak M, Adir N, Wijmenga C, van de Warrenburg BPC, Franke L, Sinke RJ, Verbeek DS: Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain. 2017 Nov 1;140(11):2860-2878. doi: 10.1093/brain/awx251. [Article]
  120. Menke LA, Gardeitchik T, Hammond P, Heimdal KR, Houge G, Hufnagel SB, Ji J, Johansson S, Kant SG, Kinning E, Leon EL, Newbury-Ecob R, Paolacci S, Pfundt R, Ragge NK, Rinne T, Ruivenkamp C, Saitta SC, Sun Y, Tartaglia M, Terhal PA, van Essen AJ, Vigeland MD, Xiao B, Hennekam RC: Further delineation of an entity caused by CREBBP and EP300 mutations but not resembling Rubinstein-Taybi syndrome. Am J Med Genet A. 2018 Apr;176(4):862-876. doi: 10.1002/ajmg.a.38626. Epub 2018 Feb 20. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails