ATP
Explore a selection of our essential drug information below, or:
Identification
- Generic Name
- ATP
- DrugBank Accession Number
- DB00171
- Background
An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.
- Type
- Small Molecule
- Groups
- Investigational, Nutraceutical
- Structure
- Weight
- Average: 507.181
Monoisotopic: 506.995745159 - Chemical Formula
- C10H16N5O13P3
- Synonyms
- Adenosine 5'-triphosphate
- Adenosine triphosphate
- Adenosine-5'-triphosphate
- ATP
Pharmacology
- Indication
For nutritional supplementation, also for treating dietary shortage or imbalance
Reduce drug development failure ratesBuild, train, & validate machine-learning modelswith evidence-based and structured datasets.Build, train, & validate predictive machine-learning models with structured datasets.- Associated Conditions
Indication Type Indication Combined Product Details Approval Level Age Group Patient Characteristics Dose Form Treatment of Arrhythmia supraventricular •••••••••••• ••••••••• Treatment of Supraventricular arrhythmias •••••••••••• ••••••• •••• •••••• - Contraindications & Blackbox Warnings
- Prevent Adverse Drug Events TodayTap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.Avoid life-threatening adverse drug events with our Clinical API
- Pharmacodynamics
Adenosine triphosphate (ATP) is the nucleotide known in biochemistry as the "molecular currency" of intracellular energy transfer; that is, ATP is able to store and transport chemical energy within cells. ATP also plays an important role in the synthesis of nucleic acids. The total quantity of ATP in the human body is about 0.1 mole. The energy used by human cells requires the hydrolysis of 200 to 300 moles of ATP daily. This means that each ATP molecule is recycled 2000 to 3000 times during a single day. ATP cannot be stored, hence its consumption must closely follow its synthesis.
- Mechanism of action
ATP is able to store and transport chemical energy within cells. ATP also plays an important role in the synthesis of nucleic acids. ATP can be produced by various cellular processes, most typically in mitochondria by oxidative phosphorylation under the catalytic influence of ATP synthase. The total quantity of ATP in the human body is about 0.1 mole. The energy used by human cells requires the hydrolysis of 200 to 300 moles of ATP daily. This means that each ATP molecule is recycled 2000 to 3000 times during a single day. ATP cannot be stored, hence its consumption must closely follow its synthesis.
- Absorption
Not Available
- Volume of distribution
Not Available
- Protein binding
Not Available
- Metabolism
- Not Available
- Route of elimination
Not Available
- Half-life
Not Available
- Clearance
Not Available
- Adverse Effects
- Improve decision support & research outcomesWith structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!Improve decision support & research outcomes with our structured adverse effects data.
- Toxicity
Oral LD50 in rats is > 2 g/kg.
- Pathways
- Pharmacogenomic Effects/ADRs
- Not Available
Interactions
- Drug Interactions
- This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.Not Available
- Food Interactions
- Not Available
Products
- Drug product information from 10+ global regionsOur datasets provide approved product information including:dosage, form, labeller, route of administration, and marketing period.Access drug product information from over 10 global regions.
- Product Ingredients
Ingredient UNII CAS InChI Key Adenosine triphosphate disodium 5L51B4DR1G 987-65-5 TTWYZDPBDWHJOR-IDIVVRGQSA-L Adenosine triphosphate disodium trihydrate 7ZRM409FOZ 51963-61-2 MWEQTWJABOLLOS-AZGWGOJFSA-L - International/Other Brands
- Atriphos (Biochimica) / Striadyne (Auclair)
Categories
- Drug Categories
- Chemical TaxonomyProvided by Classyfire
- Description
- This compound belongs to the class of organic compounds known as purine ribonucleoside triphosphates. These are purine ribobucleotides with a triphosphate group linked to the ribose moiety.
- Kingdom
- Organic compounds
- Super Class
- Nucleosides, nucleotides, and analogues
- Class
- Purine nucleotides
- Sub Class
- Purine ribonucleotides
- Direct Parent
- Purine ribonucleoside triphosphates
- Alternative Parents
- Purine ribonucleoside monophosphates / Pentose phosphates / Glycosylamines / 6-aminopurines / Monosaccharide phosphates / Monoalkyl phosphates / Aminopyrimidines and derivatives / N-substituted imidazoles / Imidolactams / Heteroaromatic compounds show 9 more
- Substituents
- 1,2-diol / 6-aminopurine / Alcohol / Alkyl phosphate / Amine / Aminopyrimidine / Aromatic heteropolycyclic compound / Azacycle / Azole / Glycosyl compound show 30 more
- Molecular Framework
- Aromatic heteropolycyclic compounds
- External Descriptors
- adenosine 5'-phosphate, purine ribonucleoside 5'-triphosphate (CHEBI:15422) / Ribonucleotides, Coenzymes (C00002)
- Affected organisms
- Humans and other mammals
Chemical Identifiers
- UNII
- 8L70Q75FXE
- CAS number
- 56-65-5
- InChI Key
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N
- InChI
- InChI=1S/C10H16N5O13P3/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(26-10)1-25-30(21,22)28-31(23,24)27-29(18,19)20/h2-4,6-7,10,16-17H,1H2,(H,21,22)(H,23,24)(H2,11,12,13)(H2,18,19,20)/t4-,6-,7-,10-/m1/s1
- IUPAC Name
- ({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid
- SMILES
- NC1=NC=NC2=C1N=CN2[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O
References
- Synthesis Reference
George M. Whitesides, Patricia E. Garrett, Merrell G. Siegel, "Method for preparing adenosine triphosphate." U.S. Patent US4164444, issued April, 1975.
US4164444- General References
- Gajewski E, Steckler DK, Goldberg RN: Thermodynamics of the hydrolysis of adenosine 5'-triphosphate to adenosine 5'-diphosphate. J Biol Chem. 1986 Sep 25;261(27):12733-7. [Article]
- Storer AC, Cornish-Bowden A: Concentration of MgATP2- and other ions in solution. Calculation of the true concentrations of species present in mixtures of associating ions. Biochem J. 1976 Oct 1;159(1):1-5. [Article]
- Wilson JE, Chin A: Chelation of divalent cations by ATP, studied by titration calorimetry. Anal Biochem. 1991 Feb 15;193(1):16-9. [Article]
- Garfinkel L, Altschuld RA, Garfinkel D: Magnesium in cardiac energy metabolism. J Mol Cell Cardiol. 1986 Oct;18(10):1003-13. [Article]
- Parsons M: Glycosomes: parasites and the divergence of peroxisomal purpose. Mol Microbiol. 2004 Aug;53(3):717-24. [Article]
- External Links
- Human Metabolome Database
- HMDB0000538
- KEGG Drug
- D08646
- KEGG Compound
- C00002
- PubChem Compound
- 5957
- PubChem Substance
- 46507614
- ChemSpider
- 5742
- BindingDB
- 2
- 318
- ChEBI
- 15422
- ChEMBL
- CHEMBL14249
- ZINC
- ZINC000004261765
- Therapeutic Targets Database
- DNC000262
- PharmGKB
- PA164743471
- PDBe Ligand
- ATP
- Wikipedia
- Adenosine_triphosphate
- PDB Entries
- 1a0i / 1a49 / 1a5u / 1a82 / 1aq2 / 1asz / 1atn / 1atp / 1ayl / 1b0u … show 2671 more
- MSDS
- Download (72.6 KB)
Clinical Trials
- Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package Phase Status Purpose Conditions Count Start Date Why Stopped 100+ additional columns Unlock 175K+ rows when you subscribe.View sample dataNot Available Completed Basic Science Cough 1 somestatus stop reason just information to hide Not Available Completed Treatment Atrial Fibrillation 1 somestatus stop reason just information to hide 4 Completed Treatment Atrial Fibrillation 1 somestatus stop reason just information to hide 3 Completed Treatment Cancer / Palliatives Treatments / Quality of Life (QOL) / Survival 1 somestatus stop reason just information to hide 2 Completed Other Alzheimer's Disease (AD) 1 somestatus stop reason just information to hide
Pharmacoeconomics
- Manufacturers
- Not Available
- Packagers
- Not Available
- Dosage Forms
Form Route Strength Tablet, film coated Oral - Prices
- Not Available
- Patents
- Not Available
Properties
- State
- Solid
- Experimental Properties
Property Value Source melting point (°C) 176 °C Not Available water solubility 1E+006 mg/L MERCK INDEX (1996); freely soluble logP -5.5 Not Available - Predicted Properties
Property Value Source Water Solubility 4.49 mg/mL ALOGPS logP -0.84 ALOGPS logP -5.4 Chemaxon logS -2 ALOGPS pKa (Strongest Acidic) 0.9 Chemaxon pKa (Strongest Basic) 4.93 Chemaxon Physiological Charge -4 Chemaxon Hydrogen Acceptor Count 14 Chemaxon Hydrogen Donor Count 7 Chemaxon Polar Surface Area 279.13 Å2 Chemaxon Rotatable Bond Count 8 Chemaxon Refractivity 95.81 m3·mol-1 Chemaxon Polarizability 39.07 Å3 Chemaxon Number of Rings 3 Chemaxon Bioavailability 0 Chemaxon Rule of Five No Chemaxon Ghose Filter No Chemaxon Veber's Rule No Chemaxon MDDR-like Rule Yes Chemaxon - Predicted ADMET Features
Property Value Probability Human Intestinal Absorption - 0.8672 Blood Brain Barrier + 0.9035 Caco-2 permeable - 0.7475 P-glycoprotein substrate Non-substrate 0.6692 P-glycoprotein inhibitor I Non-inhibitor 0.8983 P-glycoprotein inhibitor II Non-inhibitor 0.9763 Renal organic cation transporter Non-inhibitor 0.9571 CYP450 2C9 substrate Non-substrate 0.8379 CYP450 2D6 substrate Non-substrate 0.8363 CYP450 3A4 substrate Non-substrate 0.5673 CYP450 1A2 substrate Non-inhibitor 0.8908 CYP450 2C9 inhibitor Non-inhibitor 0.9403 CYP450 2D6 inhibitor Non-inhibitor 0.9005 CYP450 2C19 inhibitor Non-inhibitor 0.9352 CYP450 3A4 inhibitor Non-inhibitor 0.9375 CYP450 inhibitory promiscuity Low CYP Inhibitory Promiscuity 0.976 Ames test Non AMES toxic 0.8933 Carcinogenicity Non-carcinogens 0.9165 Biodegradation Not ready biodegradable 0.9645 Rat acute toxicity 2.5022 LD50, mol/kg Not applicable hERG inhibition (predictor I) Weak inhibitor 0.9727 hERG inhibition (predictor II) Non-inhibitor 0.8159
Spectra
- Mass Spec (NIST)
- Not Available
- Spectra
- Chromatographic Properties
Collision Cross Sections (CCS)
Adduct CCS Value (Å2) Source type Source [M-H]- 219.8533928 predictedDarkChem Lite v0.1.0 [M-H]- 225.8660928 predictedDarkChem Lite v0.1.0 [M-H]- 205.0044928 predictedDarkChem Lite v0.1.0 [M-H]- 231.7764928 predictedDarkChem Lite v0.1.0 [M-H]- 168.8962 predictedDeepCCS 1.0 (2019) [M+H]+ 223.1981928 predictedDarkChem Lite v0.1.0 [M+H]+ 225.5127928 predictedDarkChem Lite v0.1.0 [M+H]+ 206.0154928 predictedDarkChem Lite v0.1.0 [M+H]+ 230.7223928 predictedDarkChem Lite v0.1.0 [M+H]+ 171.69351 predictedDeepCCS 1.0 (2019) [M+Na]+ 222.3238928 predictedDarkChem Lite v0.1.0 [M+Na]+ 225.8385928 predictedDarkChem Lite v0.1.0 [M+Na]+ 206.1454928 predictedDarkChem Lite v0.1.0 [M+Na]+ 230.3052928 predictedDarkChem Lite v0.1.0 [M+Na]+ 179.74715 predictedDeepCCS 1.0 (2019)
Targets
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Inhibitor
- General Function
- Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 acts also as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity)
- Specific Function
- actin filament binding
- Gene Name
- ABL1
- Uniprot ID
- P00519
- Uniprot Name
- Tyrosine-protein kinase ABL1
- Molecular Weight
- 122871.435 Da
References
- Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [Article]
- Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [Article]
- Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]
- Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes physiological compounds, and xenobiotics from cells. Mediates ATP-dependent transport of glutathione conjugates such as leukotriene-c4 (LTC4) and N-ethylmaleimide S-glutathione (NEM-GS) (in vitro), and an anionic cyclopentapeptide endothelin antagonist, BQ-123 (PubMed:11880368, PubMed:12414644). May contribute to regulate the transport of organic compounds in testes across the blood-testis-barrier (Probable). Does not appear to actively transport drugs outside the cell. Confers low levels of cellular resistance to etoposide, teniposide, anthracyclines and cisplatin (PubMed:12414644)
- Specific Function
- ABC-type glutathione S-conjugate transporter activity
- Gene Name
- ABCC6
- Uniprot ID
- O95255
- Uniprot Name
- ATP-binding cassette sub-family C member 6
- Molecular Weight
- 164904.81 Da
References
- Ilias A, Urban Z, Seidl TL, Le Saux O, Sinko E, Boyd CD, Sarkadi B, Varadi A: Loss of ATP-dependent transport activity in pseudoxanthoma elasticum-associated mutants of human ABCC6 (MRP6). J Biol Chem. 2002 May 10;277(19):16860-7. Epub 2002 Mar 5. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes physiological compounds and xenobiotics from cells. Transports a range of endogenous molecules that have a key role in cellular communication and signaling, including cyclic nucleotides such as cyclic AMP (cAMP) and cyclic GMP (cGMP), bile acids, steroid conjugates, urate, and prostaglandins (PubMed:11856762, PubMed:12523936, PubMed:12835412, PubMed:12883481, PubMed:15364914, PubMed:15454390, PubMed:16282361, PubMed:17959747, PubMed:18300232, PubMed:26721430). Mediates the ATP-dependent efflux of glutathione conjugates such as leukotriene C4 (LTC4) and leukotriene B4 (LTB4) too. The presence of GSH is necessary for the ATP-dependent transport of LTB4, whereas GSH is not required for the transport of LTC4 (PubMed:17959747). Mediates the cotransport of bile acids with reduced glutathione (GSH) (PubMed:12523936, PubMed:12883481, PubMed:16282361). Transports a wide range of drugs and their metabolites, including anticancer, antiviral and antibiotics molecules (PubMed:11856762, PubMed:12105214, PubMed:15454390, PubMed:17344354, PubMed:18300232). Confers resistance to anticancer agents such as methotrexate (PubMed:11106685)
- Specific Function
- 15-hydroxyprostaglandin dehydrogenase (NAD+) activity
- Gene Name
- ABCC4
- Uniprot ID
- O15439
- Uniprot Name
- ATP-binding cassette sub-family C member 4
- Molecular Weight
- 149525.33 Da
References
- Sauna ZE, Peng XH, Nandigama K, Tekle S, Ambudkar SV: The molecular basis of the action of disulfiram as a modulator of the multidrug resistance-linked ATP binding cassette transporters MDR1 (ABCB1) and MRP1 (ABCC1). Mol Pharmacol. 2004 Mar;65(3):675-84. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Curator comments
- ATP as a substrate for hydrolysis by ABCC1
- General Function
- Mediates export of organic anions and drugs from the cytoplasm (PubMed:10064732, PubMed:11114332, PubMed:16230346, PubMed:7961706, PubMed:9281595). Mediates ATP-dependent transport of glutathione and glutathione conjugates, leukotriene C4, estradiol-17-beta-o-glucuronide, methotrexate, antiviral drugs and other xenobiotics (PubMed:10064732, PubMed:11114332, PubMed:16230346, PubMed:7961706, PubMed:9281595). Confers resistance to anticancer drugs by decreasing accumulation of drug in cells, and by mediating ATP- and GSH-dependent drug export (PubMed:9281595). Hydrolyzes ATP with low efficiency (PubMed:16230346). Catalyzes the export of sphingosine 1-phosphate from mast cells independently of their degranulation (PubMed:17050692). Participates in inflammatory response by allowing export of leukotriene C4 from leukotriene C4-synthezing cells (By similarity). Mediates ATP-dependent, GSH-independent cyclic GMP-AMP (cGAMP) export (PubMed:36070769). Thus, by limiting intracellular cGAMP concentrations negatively regulates the cGAS-STING pathway (PubMed:36070769)
- Specific Function
- ABC-type glutathione S-conjugate transporter activity
- Gene Name
- ABCC1
- Uniprot ID
- P33527
- Uniprot Name
- Multidrug resistance-associated protein 1
- Molecular Weight
- 171589.5 Da
References
- Westlake CJ, Payen L, Gao M, Cole SP, Deeley RG: Identification and characterization of functionally important elements in the multidrug resistance protein 1 COOH-terminal region. J Biol Chem. 2004 Dec 17;279(51):53571-83. Epub 2004 Sep 30. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Cofactor
- General Function
- Epithelial ion channel that plays an important role in the regulation of epithelial ion and water transport and fluid homeostasis (PubMed:26823428). Mediates the transport of chloride ions across the cell membrane (PubMed:10792060, PubMed:11524016, PubMed:11707463, PubMed:12519745, PubMed:12529365, PubMed:12588899, PubMed:12727866, PubMed:15010471, PubMed:17036051, PubMed:1712898, PubMed:17182731, PubMed:19398555, PubMed:19621064, PubMed:22178883, PubMed:25330774, PubMed:26846474, PubMed:28087700, PubMed:8910473, PubMed:9804160). Possesses an intrinsic ATPase activity and utilizes ATP to gate its channel; the passive flow of anions through the channel is gated by cycles of ATP binding and hydrolysis by the ATP-binding domains (PubMed:11524016, PubMed:15284228, PubMed:26627831, PubMed:8910473). The ion channel is also permeable to HCO(3)(-); selectivity depends on the extracellular chloride concentration (PubMed:15010471, PubMed:19019741). In vitro, mediates ATP-dependent glutathione flux (PubMed:12727866). Exerts its function also by modulating the activity of other ion channels and transporters (PubMed:12403779, PubMed:22121115, PubMed:22178883, PubMed:27941075). Plays an important role in airway fluid homeostasis (PubMed:16645176, PubMed:19621064, PubMed:26823428). Contributes to the regulation of the pH and the ion content of the airway surface fluid layer and thereby plays an important role in defense against pathogens (PubMed:14668433, PubMed:16645176, PubMed:26823428). Modulates the activity of the epithelial sodium channel (ENaC) complex, in part by regulating the cell surface expression of the ENaC complex (PubMed:17182731, PubMed:17434346, PubMed:27941075). Inhibits the activity of the ENaC channel containing subunits SCNN1A, SCNN1B and SCNN1G (PubMed:17182731). Inhibits the activity of the ENaC channel containing subunits SCNN1D, SCNN1B and SCNN1G, but not of the ENaC channel containing subunits SCNN1A, SCNN1B and SCNN1G (PubMed:17182731, PubMed:27941075). May regulate bicarbonate secretion and salvage in epithelial cells by regulating the transporter SLC4A7 (PubMed:12403779). Can inhibit the chloride channel activity of ANO1 (PubMed:22178883). Plays a role in the chloride and bicarbonate homeostasis during sperm epididymal maturation and capacitation (PubMed:19923167, PubMed:27714810)
- Specific Function
- ABC-type transporter activity
- Gene Name
- CFTR
- Uniprot ID
- P13569
- Uniprot Name
- Cystic fibrosis transmembrane conductance regulator
- Molecular Weight
- 168139.895 Da
References
- Berger AL, Ikuma M, Welsh MJ: Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotide-binding domain. Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):455-60. Epub 2004 Dec 27. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Phosphoinositide-3-kinase (PI3K) phosphorylates phosphatidylinositol (PI) and its phosphorylated derivatives at position 3 of the inositol ring to produce 3-phosphoinositides (PubMed:15135396, PubMed:23936502, PubMed:28676499). Uses ATP and PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3) (PubMed:15135396, PubMed:28676499). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Participates in cellular signaling in response to various growth factors. Involved in the activation of AKT1 upon stimulation by receptor tyrosine kinases ligands such as EGF, insulin, IGF1, VEGFA and PDGF. Involved in signaling via insulin-receptor substrate (IRS) proteins. Essential in endothelial cell migration during vascular development through VEGFA signaling, possibly by regulating RhoA activity. Required for lymphatic vasculature development, possibly by binding to RAS and by activation by EGF and FGF2, but not by PDGF. Regulates invadopodia formation through the PDPK1-AKT1 pathway. Participates in cardiomyogenesis in embryonic stem cells through a AKT1 pathway. Participates in vasculogenesis in embryonic stem cells through PDK1 and protein kinase C pathway. In addition to its lipid kinase activity, it displays a serine-protein kinase activity that results in the autophosphorylation of the p85alpha regulatory subunit as well as phosphorylation of other proteins such as 4EBP1, H-Ras, the IL-3 beta c receptor and possibly others (PubMed:23936502, PubMed:28676499). Plays a role in the positive regulation of phagocytosis and pinocytosis (By similarity)
- Specific Function
- 1-phosphatidylinositol-3-kinase activity
- Gene Name
- PIK3CA
- Uniprot ID
- P42336
- Uniprot Name
- Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform
- Molecular Weight
- 124283.025 Da
References
- Folkes AJ, Ahmadi K, Alderton WK, Alix S, Baker SJ, Box G, Chuckowree IS, Clarke PA, Depledge P, Eccles SA, Friedman LS, Hayes A, Hancox TC, Kugendradas A, Lensun L, Moore P, Olivero AG, Pang J, Patel S, Pergl-Wilson GH, Raynaud FI, Robson A, Saghir N, Salphati L, Sohal S, Ultsch MH, Valenti M, Wallweber HJ, Wan NC, Wiesmann C, Workman P, Zhyvoloup A, Zvelebil MJ, Shuttleworth SJ: The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-t hieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer . J Med Chem. 2008 Sep 25;51(18):5522-32. doi: 10.1021/jm800295d. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Catalytic subunit of a constitutively active serine/threonine-protein kinase complex that phosphorylates a large number of substrates containing acidic residues C-terminal to the phosphorylated serine or threonine (PubMed:11239457, PubMed:11704824, PubMed:16193064, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:19188443, PubMed:20545769, PubMed:20625391, PubMed:22017874, PubMed:22406621, PubMed:24962073, PubMed:30898438, PubMed:31439799). Regulates numerous cellular processes, such as cell cycle progression, apoptosis and transcription, as well as viral infection (PubMed:12631575, PubMed:19387551, PubMed:19387552). May act as a regulatory node which integrates and coordinates numerous signals leading to an appropriate cellular response (PubMed:12631575, PubMed:19387551, PubMed:19387552). During mitosis, functions as a component of the p53/TP53-dependent spindle assembly checkpoint (SAC) that maintains cyclin-B-CDK1 activity and G2 arrest in response to spindle damage (PubMed:11704824, PubMed:19188443). Also required for p53/TP53-mediated apoptosis, phosphorylating 'Ser-392' of p53/TP53 following UV irradiation (PubMed:11239457). Phosphorylates a number of DNA repair proteins in response to DNA damage, such as MDC1, MRE11, RAD9A, RAD51 and HTATSF1, promoting their recruitment to DNA damage sites (PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:20545769, PubMed:21482717, PubMed:22325354, PubMed:26811421, PubMed:28512243, PubMed:30898438, PubMed:35597237). Can also negatively regulate apoptosis (PubMed:16193064, PubMed:22184066). Phosphorylates the caspases CASP9 and CASP2 and the apoptotic regulator NOL3 (PubMed:16193064). Phosphorylation protects CASP9 from cleavage and activation by CASP8, and inhibits the dimerization of CASP2 and activation of CASP8 (PubMed:16193064). Phosphorylates YY1, protecting YY1 from cleavage by CASP7 during apoptosis (PubMed:22184066). Regulates transcription by direct phosphorylation of RNA polymerases I, II, III and IV (PubMed:12631575, PubMed:19387550, PubMed:19387551, PubMed:19387552, PubMed:23123191). Also phosphorylates and regulates numerous transcription factors including NF-kappa-B, STAT1, CREB1, IRF1, IRF2, ATF1, ATF4, SRF, MAX, JUN, FOS, MYC and MYB (PubMed:12631575, PubMed:19387550, PubMed:19387551, PubMed:19387552, PubMed:23123191). Phosphorylates Hsp90 and its co-chaperones FKBP4 and CDC37, which is essential for chaperone function (PubMed:19387550). Mediates sequential phosphorylation of FNIP1, promoting its gradual interaction with Hsp90, leading to activate both kinase and non-kinase client proteins of Hsp90 (PubMed:30699359). Regulates Wnt signaling by phosphorylating CTNNB1 and the transcription factor LEF1 (PubMed:19387549). Acts as an ectokinase that phosphorylates several extracellular proteins (PubMed:12631575, PubMed:19387550, PubMed:19387551, PubMed:19387552). During viral infection, phosphorylates various proteins involved in the viral life cycles of EBV, HSV, HBV, HCV, HIV, CMV and HPV (PubMed:12631575, PubMed:19387550, PubMed:19387551, PubMed:19387552). Phosphorylates PML at 'Ser-565' and primes it for ubiquitin-mediated degradation (PubMed:20625391, PubMed:22406621). Plays an important role in the circadian clock function by phosphorylating BMAL1 at 'Ser-90' which is pivotal for its interaction with CLOCK and which controls CLOCK nuclear entry (By similarity). Phosphorylates CCAR2 at 'Thr-454' in gastric carcinoma tissue (PubMed:24962073). Phosphorylates FMR1, promoting FMR1-dependent formation of a membraneless compartment (PubMed:30765518, PubMed:31439799). May phosphorylate histone H2A on 'Ser-1' (PubMed:38334665)
- Specific Function
- ATP binding
- Gene Name
- CSNK2A1
- Uniprot ID
- P68400
- Uniprot Name
- Casein kinase II subunit alpha
- Molecular Weight
- 45143.25 Da
References
- Pierre F, Chua PC, O'Brien SE, Siddiqui-Jain A, Bourbon P, Haddach M, Michaux J, Nagasawa J, Schwaebe MK, Stefan E, Vialettes A, Whitten JP, Chen TK, Darjania L, Stansfield R, Anderes K, Bliesath J, Drygin D, Ho C, Omori M, Proffitt C, Streiner N, Trent K, Rice WG, Ryckman DM: Discovery and SAR of 5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. J Med Chem. 2011 Jan 27;54(2):635-54. doi: 10.1021/jm101251q. Epub 2010 Dec 21. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Regulatory subunit of casein kinase II/CK2. As part of the kinase complex regulates the basal catalytic activity of the alpha subunit a constitutively active serine/threonine-protein kinase that phosphorylates a large number of substrates containing acidic residues C-terminal to the phosphorylated serine or threonine (PubMed:11239457, PubMed:16818610). Participates in Wnt signaling (By similarity)
- Specific Function
- chromatin binding
- Gene Name
- CSNK2B
- Uniprot ID
- P67870
- Uniprot Name
- Casein kinase II subunit beta
- Molecular Weight
- 24942.25 Da
References
- Pierre F, Chua PC, O'Brien SE, Siddiqui-Jain A, Bourbon P, Haddach M, Michaux J, Nagasawa J, Schwaebe MK, Stefan E, Vialettes A, Whitten JP, Chen TK, Darjania L, Stansfield R, Anderes K, Bliesath J, Drygin D, Ho C, Omori M, Proffitt C, Streiner N, Trent K, Rice WG, Ryckman DM: Discovery and SAR of 5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. J Med Chem. 2011 Jan 27;54(2):635-54. doi: 10.1021/jm101251q. Epub 2010 Dec 21. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Receptor for ATP and ADP coupled to G-proteins that activate both phosphatidylinositol-calcium and adenylyl cyclase second messenger systems. Not activated by UTP or UDP
- Specific Function
- G protein-coupled ATP receptor activity
- Gene Name
- P2RY11
- Uniprot ID
- Q96G91
- Uniprot Name
- P2Y purinoceptor 11
- Molecular Weight
- 40344.755 Da
References
- Xiao Z, Yang M, Lv Q, Wang W, Deng M, Liu X, He Q, Chen X, Chen M, Fang L, Xie X, Hu J: P2Y11 impairs cell proliferation by induction of cell cycle arrest and sensitizes endothelial cells to cisplatin-induced cell death. J Cell Biochem. 2011 Sep;112(9):2257-65. doi: 10.1002/jcb.23144. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Serine/threonine-protein phosphatase that dephosphorylates a myriad of proteins involved in different signaling pathways including the kinases CSNK1E, ASK1/MAP3K5, PRKDC and RAF1, the nuclear receptors NR3C1, PPARG, ESR1 and ESR2, SMAD proteins and TAU/MAPT (PubMed:14734805, PubMed:14764652, PubMed:14871926, PubMed:15383005, PubMed:15546861, PubMed:16260606, PubMed:16790549, PubMed:16892053, PubMed:19176521, PubMed:19948726, PubMed:21144835, PubMed:22399290, PubMed:22781750, PubMed:23102700, PubMed:30699359, PubMed:9000529). Implicated in wide ranging cellular processes, including apoptosis, differentiation, DNA damage response, cell survival, regulation of ion channels or circadian rhythms, in response to steroid and thyroid hormones, calcium, fatty acids, TGF-beta as well as oxidative and genotoxic stresses (PubMed:14734805, PubMed:14764652, PubMed:14871926, PubMed:15383005, PubMed:15546861, PubMed:16260606, PubMed:16790549, PubMed:16892053, PubMed:19176521, PubMed:19948726, PubMed:21144835, PubMed:22399290, PubMed:22781750, PubMed:23102700, PubMed:30699359, PubMed:9000529). Participates in the control of DNA damage response mechanisms such as checkpoint activation and DNA damage repair through, for instance, the regulation ATM/ATR-signaling and dephosphorylation of PRKDC and TP53BP1 (PubMed:14871926, PubMed:16260606, PubMed:21144835). Inhibits ASK1/MAP3K5-mediated apoptosis induced by oxidative stress (PubMed:23102700). Plays a positive role in adipogenesis, mainly through the dephosphorylation and activation of PPARG transactivation function (By similarity). Also dephosphorylates and inhibits the anti-adipogenic effect of NR3C1 (By similarity). Regulates the circadian rhythms, through the dephosphorylation and activation of CSNK1E (PubMed:16790549). May modulate TGF-beta signaling pathway by the regulation of SMAD3 phosphorylation and protein expression levels (PubMed:22781750). Dephosphorylates and may play a role in the regulation of TAU/MAPT (PubMed:15546861). Through their dephosphorylation, may play a role in the regulation of ions channels such as KCNH2 (By similarity). Dephosphorylate FNIP1, disrupting interaction with HSP90AA1/Hsp90 (PubMed:30699359)
- Specific Function
- ADP binding
- Gene Name
- PPP5C
- Uniprot ID
- P53041
- Uniprot Name
- Serine/threonine-protein phosphatase 5
- Molecular Weight
- 56878.22 Da
References
- Hong TJ, Kim S, Wi AR, Lee P, Kang M, Jeong JH, Hahn JS: Dynamic nucleotide-dependent interactions of cysteine- and histidine-rich domain (CHORD)-containing Hsp90 cochaperones Chp-1 and melusin with cochaperones PP5 and Sgt1. J Biol Chem. 2013 Jan 4;288(1):215-22. doi: 10.1074/jbc.M112.398636. Epub 2012 Nov 26. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Inhibitor
- General Function
- Non-receptor tyrosine-protein kinase that plays an ABL1-overlapping role in key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion and receptor endocytosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like MYH10 (involved in movement); CTTN (involved in signaling); or TUBA1 and TUBB (microtubule subunits). Binds directly F-actin and regulates actin cytoskeletal structure through its F-actin-bundling activity. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as CRK, CRKL, DOK1 or ARHGAP35. Adhesion-dependent phosphorylation of ARHGAP35 promotes its association with RASA1, resulting in recruitment of ARHGAP35 to the cell periphery where it inhibits RHO. Phosphorylates multiple receptor tyrosine kinases like PDGFRB and other substrates which are involved in endocytosis regulation such as RIN1. In brain, may regulate neurotransmission by phosphorylating proteins at the synapse. ABL2 acts also as a regulator of multiple pathological signaling cascades during infection. Pathogens can highjack ABL2 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity)
- Specific Function
- actin filament binding
- Gene Name
- ABL2
- Uniprot ID
- P42684
- Uniprot Name
- Tyrosine-protein kinase ABL2
- Molecular Weight
- 128341.935 Da
References
- Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [Article]
- Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [Article]
- Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Catalyzes the translocation of specific phospholipids from the cytoplasmic to the extracellular/lumenal leaflet of membrane coupled to the hydrolysis of ATP (PubMed:24097981, PubMed:35974019). Thereby, participates in phospholipid transfer to apolipoproteins to form nascent high density lipoproteins/HDLs (PubMed:14754908). Transports preferentially phosphatidylcholine over phosphatidylserine (PubMed:24097981). May play a similar role in the efflux of intracellular cholesterol to apolipoproteins and the formation of nascent high density lipoproteins/HDLs (PubMed:10533863, PubMed:14754908, PubMed:24097981, PubMed:35974019). Translocates phospholipids from the outer face of the plasma membrane and forces it through its gateway and annulus into an elongated hydrophobic tunnel in its extracellular domain (PubMed:35974019)
- Specific Function
- ABC-type transporter activity
- Gene Name
- ABCA1
- Uniprot ID
- O95477
- Uniprot Name
- Phospholipid-transporting ATPase ABCA1
- Molecular Weight
- 254299.89 Da
References
- Porchay I, Pean F, Bellili N, Royer B, Cogneau J, Chesnier MC, Caradec A, Tichet J, Balkau B, Marre M, Fumeron F: ABCA1 single nucleotide polymorphisms on high-density lipoprotein-cholesterol and overweight: the D.E.S.I.R. study. Obesity (Silver Spring). 2006 Nov;14(11):1874-9. [Article]
- Badeau R, Jauhiainen M, Metso J, Nikander E, Tikkanen MJ, Ylikorkala O, Mikkola TS: Effect of isolated isoflavone supplementation on ABCA1-dependent cholesterol efflux potential in postmenopausal women. Menopause. 2007 Mar-Apr;14(2):293-9. [Article]
- Zarubica A, Trompier D, Chimini G: ABCA1, from pathology to membrane function. Pflugers Arch. 2007 Feb;453(5):569-79. Epub 2006 Jul 21. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids (PubMed:10843999, PubMed:28003429, PubMed:28552616). Acetate is the preferred substrate (PubMed:10843999, PubMed:28003429). Can also utilize propionate with a much lower affinity (By similarity). Nuclear ACSS2 promotes glucose deprivation-induced lysosomal biogenesis and autophagy, tumor cell survival and brain tumorigenesis (PubMed:28552616). Glucose deprivation results in AMPK-mediated phosphorylation of ACSS2 leading to its translocation to the nucleus where it binds to TFEB and locally produces acetyl-CoA for histone acetylation in the promoter regions of TFEB target genes thereby activating their transcription (PubMed:28552616). The regulation of genes associated with autophagy and lysosomal activity through ACSS2 is important for brain tumorigenesis and tumor survival (PubMed:28552616). Acts as a chromatin-bound transcriptional coactivator that up-regulates histone acetylation and expression of neuronal genes (By similarity). Can be recruited to the loci of memory-related neuronal genes to maintain a local acetyl-CoA pool, providing the substrate for histone acetylation and promoting the expression of specific genes, which is essential for maintaining long-term spatial memory (By similarity)
- Specific Function
- acetate-CoA ligase activity
- Gene Name
- ACSS2
- Uniprot ID
- Q9NR19
- Uniprot Name
- Acetyl-coenzyme A synthetase, cytoplasmic
- Molecular Weight
- 78579.11 Da
References
- Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [Article]
- Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [Article]
- Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC: Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science. 2002 Dec 20;298(5602):2390-2. [Article]
- Schuler AJ, Jenkins D: Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, Part II: Anaerobic adenosine triphosphate utilization and acetate uptake rates. Water Environ Res. 2003 Nov-Dec;75(6):499-511. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Neuronal receptor tyrosine kinase that is essentially and transiently expressed in specific regions of the central and peripheral nervous systems and plays an important role in the genesis and differentiation of the nervous system (PubMed:11121404, PubMed:11387242, PubMed:16317043, PubMed:17274988, PubMed:30061385, PubMed:34646012, PubMed:34819673). Also acts as a key thinness protein involved in the resistance to weight gain: in hypothalamic neurons, controls energy expenditure acting as a negative regulator of white adipose tissue lipolysis and sympathetic tone to fine-tune energy homeostasis (By similarity). Following activation by ALKAL2 ligand at the cell surface, transduces an extracellular signal into an intracellular response (PubMed:30061385, PubMed:33411331, PubMed:34646012, PubMed:34819673). In contrast, ALKAL1 is not a potent physiological ligand for ALK (PubMed:34646012). Ligand-binding to the extracellular domain induces tyrosine kinase activation, leading to activation of the mitogen-activated protein kinase (MAPK) pathway (PubMed:34819673). Phosphorylates almost exclusively at the first tyrosine of the Y-x-x-x-Y-Y motif (PubMed:15226403, PubMed:16878150). Induces tyrosine phosphorylation of CBL, FRS2, IRS1 and SHC1, as well as of the MAP kinases MAPK1/ERK2 and MAPK3/ERK1 (PubMed:15226403, PubMed:16878150). ALK activation may also be regulated by pleiotrophin (PTN) and midkine (MDK) (PubMed:11278720, PubMed:11809760, PubMed:12107166, PubMed:12122009). PTN-binding induces MAPK pathway activation, which is important for the anti-apoptotic signaling of PTN and regulation of cell proliferation (PubMed:11278720, PubMed:11809760, PubMed:12107166). MDK-binding induces phosphorylation of the ALK target insulin receptor substrate (IRS1), activates mitogen-activated protein kinases (MAPKs) and PI3-kinase, resulting also in cell proliferation induction (PubMed:12122009). Drives NF-kappa-B activation, probably through IRS1 and the activation of the AKT serine/threonine kinase (PubMed:15226403, PubMed:16878150). Recruitment of IRS1 to activated ALK and the activation of NF-kappa-B are essential for the autocrine growth and survival signaling of MDK (PubMed:15226403, PubMed:16878150)
- Specific Function
- ATP binding
- Gene Name
- ALK
- Uniprot ID
- Q9UM73
- Uniprot Name
- ALK tyrosine kinase receptor
- Molecular Weight
- 176440.535 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Regulatory subunit of the dimeric UBA3-NAE1 E1 enzyme. E1 activates NEDD8 by first adenylating its C-terminal glycine residue with ATP, thereafter linking this residue to the side chain of the catalytic cysteine, yielding a NEDD8-UBA3 thioester and free AMP. E1 finally transfers NEDD8 to the catalytic cysteine of UBE2M. Necessary for cell cycle progression through the S-M checkpoint. Overexpression of NAE1 causes apoptosis through deregulation of NEDD8 conjugation. The covalent attachment of NEDD8 to target proteins is known as 'neddylation' and the process is involved in the regulation of cell growth, viability and development
- Specific Function
- NEDD8 activating enzyme activity
- Gene Name
- NAE1
- Uniprot ID
- Q13564
- Uniprot Name
- NEDD8-activating enzyme E1 regulatory subunit
- Molecular Weight
- 60245.795 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:17307971, PubMed:17712357, PubMed:24563466, PubMed:37821951). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:17307971, PubMed:17712357). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:17307971, PubMed:17712357). Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively (By similarity). Promotes lipolysis of lipid droplets by mediating phosphorylation of isoform 1 of CHKA (CHKalpha2) (PubMed:34077757). Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3 (By similarity). AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160 (By similarity). Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A (PubMed:11518699, PubMed:11554766, PubMed:15866171, PubMed:17711846, PubMed:18184930). Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm (By similarity). In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription (By similarity). Acts as a key regulator of cell growth and proliferation by phosphorylating FNIP1, TSC2, RPTOR, WDR24 and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2 (PubMed:14651849, PubMed:18439900, PubMed:20160076, PubMed:21205641). Also phosphorylates and inhibits GATOR2 subunit WDR24 in response to nutrient limitation, leading to suppress glucose-mediated mTORC1 activation (PubMed:36732624). In response to energetic stress, phosphorylates FNIP1, inactivating the non-canonical mTORC1 signaling, thereby promoting nuclear translocation of TFEB and TFE3, and inducing transcription of lysosomal or autophagy genes (PubMed:37079666). In response to nutrient limitation, promotes autophagy by phosphorylating and activating ATG1/ULK1 (PubMed:21205641). In that process also activates WDR45/WIPI4 (PubMed:28561066). Phosphorylates CASP6, thereby preventing its autoprocessing and subsequent activation (PubMed:32029622). In response to nutrient limitation, phosphorylates transcription factor FOXO3 promoting FOXO3 mitochondrial import (By similarity). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:17486097). AMPK also acts as a regulator of circadian rhythm by mediating phosphorylation of CRY1, leading to destabilize it (By similarity). May regulate the Wnt signaling pathway by phosphorylating CTNNB1, leading to stabilize it (By similarity). Also has tau-protein kinase activity: in response to amyloid beta A4 protein (APP) exposure, activated by CAMKK2, leading to phosphorylation of MAPT/TAU; however the relevance of such data remains unclear in vivo (By similarity). Also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1 (PubMed:12519745, PubMed:20074060). Regulates hepatic lipogenesis. Activated via SIRT3, represses sterol regulatory element-binding protein (SREBP) transcriptional activities and ATP-consuming lipogenesis to restore cellular energy balance. Upon stress, regulates mitochondrial fragmentation through phosphorylation of MTFR1L (PubMed:36367943)
- Specific Function
- [hydroxymethylglutaryl-CoA reductase (NADPH)] kinase activity
- Gene Name
- PRKAA1
- Uniprot ID
- Q13131
- Uniprot Name
- 5'-AMP-activated protein kinase catalytic subunit alpha-1
- Molecular Weight
- 64008.64 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Involved in the transduction of mitogenic signals from the cell membrane to the nucleus. May also regulate the TOR signaling cascade. Phosphorylates PFKFB2 (PubMed:36402789)
- Specific Function
- ATP binding
- Gene Name
- ARAF
- Uniprot ID
- P10398
- Uniprot Name
- Serine/threonine-protein kinase A-Raf
- Molecular Weight
- 67584.825 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Type I receptor for TGF-beta family ligands BMP9/GDF2 and BMP10 and important regulator of normal blood vessel development. On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. May bind activin as well
- Specific Function
- activin binding
- Gene Name
- ACVRL1
- Uniprot ID
- P37023
- Uniprot Name
- Activin receptor type-1-like
- Molecular Weight
- 56124.03 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoAs for both synthesis of cellular lipids, and degradation via beta-oxidation (PubMed:21242590, PubMed:22633490, PubMed:24269233). Preferentially uses palmitoleate, oleate and linoleate (PubMed:24269233). Preferentially activates arachidonate than epoxyeicosatrienoic acids (EETs) or hydroxyeicosatrienoic acids (HETEs) (By similarity)
- Specific Function
- arachidonate-CoA ligase activity
- Gene Name
- ACSL1
- Uniprot ID
- P33121
- Uniprot Name
- Long-chain-fatty-acid--CoA ligase 1
- Molecular Weight
- 77942.685 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Broad specificity cytosolic 5'-nucleotidase that catalyzes the dephosphorylation of 6-hydroxypurine nucleoside 5'-monophosphates (PubMed:10092873, PubMed:12907246, PubMed:1659319, PubMed:9371705). In addition, possesses a phosphotransferase activity by which it can transfer a phosphate from a donor nucleoside monophosphate to an acceptor nucleoside, preferably inosine, deoxyinosine and guanosine (PubMed:1659319, PubMed:9371705). Has the highest activities for IMP and GMP followed by dIMP, dGMP and XMP (PubMed:10092873, PubMed:12907246, PubMed:1659319, PubMed:9371705). Could also catalyze the transfer of phosphates from pyrimidine monophosphates but with lower efficiency (PubMed:1659319, PubMed:9371705). Through these activities regulates the purine nucleoside/nucleotide pools within the cell (PubMed:10092873, PubMed:12907246, PubMed:1659319, PubMed:9371705)
- Specific Function
- 5'-nucleotidase activity
- Gene Name
- NT5C2
- Uniprot ID
- P49902
- Uniprot Name
- Cytosolic purine 5'-nucleotidase
- Molecular Weight
- 64969.2 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- ATPase required for the post-translational delivery of tail-anchored (TA) proteins to the endoplasmic reticulum. Recognizes and selectively binds the transmembrane domain of TA proteins in the cytosol. This complex then targets to the endoplasmic reticulum by membrane-bound receptors GET1/WRB and CAMLG/GET2, where the tail-anchored protein is released for insertion. This process is regulated by ATP binding and hydrolysis. ATP binding drives the homodimer towards the closed dimer state, facilitating recognition of newly synthesized TA membrane proteins. ATP hydrolysis is required for insertion. Subsequently, the homodimer reverts towards the open dimer state, lowering its affinity for the GET1-CAMLG receptor, and returning it to the cytosol to initiate a new round of targeting. May be involved in insulin signaling
- Specific Function
- arsenite transmembrane transporter activity
- Gene Name
- GET3
- Uniprot ID
- O43681
- Uniprot Name
- ATPase GET3
- Molecular Weight
- 38792.445 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Subunit of ATP-sensitive potassium channels (KATP). Can form cardiac and smooth muscle-type KATP channels with KCNJ11. KCNJ11 forms the channel pore while ABCC9 is required for activation and regulation
- Specific Function
- ABC-type transporter activity
- Gene Name
- ABCC9
- Uniprot ID
- O60706
- Uniprot Name
- ATP-binding cassette sub-family C member 9
- Molecular Weight
- 174221.7 Da
References
- Zhao JL, Yang YJ, You SJ, Jing ZC, Wu YJ, Cheng JL, Gao RL: Pretreatment with fosinopril or valsartan reduces myocardial no-reflow after acute myocardial infarction and reperfusion. Coron Artery Dis. 2006 Aug;17(5):463-9. [Article]
- Yang YJ, Zhao JL, You SJ, Wu YJ, Jing ZC, Gao RL, Chen ZJ: Post-infarction treatment with simvastatin reduces myocardial no-reflow by opening of the KATP channel. Eur J Heart Fail. 2007 Jan;9(1):30-6. Epub 2006 Jul 7. [Article]
- Bryan J, Munoz A, Zhang X, Dufer M, Drews G, Krippeit-Drews P, Aguilar-Bryan L: ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Pflugers Arch. 2007 Feb;453(5):703-18. Epub 2006 Aug 8. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- AKT1 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis (PubMed:11882383, PubMed:15526160, PubMed:15861136, PubMed:21432781, PubMed:21620960, PubMed:31204173). This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates (PubMed:11882383, PubMed:15526160, PubMed:21432781, PubMed:21620960, PubMed:31204173). Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported (PubMed:11882383, PubMed:15526160, PubMed:21432781, PubMed:21620960). AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface (By similarity). Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling (By similarity). Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport (PubMed:11994271). AKT regulates also the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity (By similarity). Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven (By similarity). AKT regulates also cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase) (PubMed:11154276). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis (PubMed:11154276). AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating the mTORC1 signaling pathway, and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1 (PubMed:12150915, PubMed:12172553). Also regulates the mTORC1 signaling pathway by catalyzing phosphorylation of CASTOR1 and DEPDC5 (PubMed:31548394, PubMed:33594058). AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization (PubMed:10358075). In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319' (PubMed:10358075). FOXO3 and FOXO4 are phosphorylated on equivalent sites (PubMed:10358075). AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein) (PubMed:9829964). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1 (PubMed:9829964). AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis (By similarity). Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis (By similarity). Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity (By similarity). The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth (By similarity). AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I) (PubMed:12176338, PubMed:12964941). AKT mediates the antiapoptotic effects of IGF-I (By similarity). Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly (PubMed:19934221). May be involved in the regulation of the placental development (By similarity). Phosphorylates STK4/MST1 at 'Thr-120' and 'Thr-387' leading to inhibition of its: kinase activity, nuclear translocation, autophosphorylation and ability to phosphorylate FOXO3 (PubMed:17726016). Phosphorylates STK3/MST2 at 'Thr-117' and 'Thr-384' leading to inhibition of its: cleavage, kinase activity, autophosphorylation at Thr-180, binding to RASSF1 and nuclear translocation (PubMed:20086174, PubMed:20231902). Phosphorylates SRPK2 and enhances its kinase activity towards SRSF2 and ACIN1 and promotes its nuclear translocation (PubMed:19592491). Phosphorylates RAF1 at 'Ser-259' and negatively regulates its activity (PubMed:10576742). Phosphorylation of BAD stimulates its pro-apoptotic activity (PubMed:10926925). Phosphorylates KAT6A at 'Thr-369' and this phosphorylation inhibits the interaction of KAT6A with PML and negatively regulates its acetylation activity towards p53/TP53 (PubMed:23431171). Phosphorylates palladin (PALLD), modulating cytoskeletal organization and cell motility (PubMed:20471940). Phosphorylates prohibitin (PHB), playing an important role in cell metabolism and proliferation (PubMed:18507042). Phosphorylates CDKN1A, for which phosphorylation at 'Thr-145' induces its release from CDK2 and cytoplasmic relocalization (PubMed:16982699). These recent findings indicate that the AKT1 isoform has a more specific role in cell motility and proliferation (PubMed:16139227). Phosphorylates CLK2 thereby controlling cell survival to ionizing radiation (PubMed:20682768). Phosphorylates PCK1 at 'Ser-90', reducing the binding affinity of PCK1 to oxaloacetate and changing PCK1 into an atypical protein kinase activity using GTP as donor (PubMed:32322062). Also acts as an activator of TMEM175 potassium channel activity in response to growth factors: forms the lysoK(GF) complex together with TMEM175 and acts by promoting TMEM175 channel activation, independently of its protein kinase activity (PubMed:32228865). Acts as a regulator of mitochondrial calcium uptake by mediating phosphorylation of MICU1 in the mitochondrial intermembrane space, impairing MICU1 maturation (PubMed:30504268). Acts as an inhibitor of tRNA methylation by mediating phosphorylation of the N-terminus of METTL1, thereby inhibiting METTL1 methyltransferase activity (PubMed:15861136). In response to LPAR1 receptor pathway activation, phosphorylates Rabin8/RAB3IP which alters its activity and phosphorylates WDR44 which induces WDR44 binding to Rab11, thereby switching Rab11 vesicular function from preciliary trafficking to endocytic recycling (PubMed:31204173)
- Specific Function
- 14-3-3 protein binding
- Gene Name
- AKT1
- Uniprot ID
- P31749
- Uniprot Name
- RAC-alpha serine/threonine-protein kinase
- Molecular Weight
- 55686.035 Da
References
- Van Meter TE, Broaddus WC, Cash D, Fillmore H: Cotreatment with a novel phosphoinositide analogue inhibitor and carmustine enhances chemotherapeutic efficacy by attenuating AKT activity in gliomas. Cancer. 2006 Nov 15;107(10):2446-54. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Specifically phosphorylates the agonist-occupied form of the beta-adrenergic and closely related receptors, probably inducing a desensitization of them (PubMed:19715378). Key regulator of LPAR1 signaling (PubMed:19306925). Competes with RALA for binding to LPAR1 thus affecting the signaling properties of the receptor (PubMed:19306925). Desensitizes LPAR1 and LPAR2 in a phosphorylation-independent manner (PubMed:19306925). Positively regulates ciliary smoothened (SMO)-dependent Hedgehog (Hh) signaling pathway by facilitating the trafficking of SMO into the cilium and the stimulation of SMO activity (By similarity). Inhibits relaxation of airway smooth muscle in response to blue light (PubMed:30284927)
- Specific Function
- alpha-2A adrenergic receptor binding
- Gene Name
- GRK2
- Uniprot ID
- P25098
- Uniprot Name
- Beta-adrenergic receptor kinase 1
- Molecular Weight
- 79572.96 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Oligomeric Apaf-1 mediates the cytochrome c-dependent autocatalytic activation of pro-caspase-9 (Apaf-3), leading to the activation of caspase-3 and apoptosis. This activation requires ATP. Isoform 6 is less effective in inducing apoptosis
- Specific Function
- ADP binding
- Gene Name
- APAF1
- Uniprot ID
- O14727
- Uniprot Name
- Apoptotic protease-activating factor 1
- Molecular Weight
- 141838.815 Da
References
- Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [Article]
- Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [Article]
- Chinnaiyan AM: The apoptosome: heart and soul of the cell death machine. Neoplasia. 1999 Apr;1(1):5-15. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids (PubMed:16788062). Acetate is the preferred substrate (PubMed:16788062). Can also utilize propionate with a much lower affinity (By similarity). Provides acetyl-CoA that is utilized mainly for oxidation under ketogenic conditions (By similarity). Involved in thermogenesis under ketogenic conditions, using acetate as a vital fuel when carbohydrate availability is insufficient (By similarity)
- Specific Function
- acetate-CoA ligase activity
- Gene Name
- ACSS1
- Uniprot ID
- Q9NUB1
- Uniprot Name
- Acetyl-coenzyme A synthetase 2-like, mitochondrial
- Molecular Weight
- 74856.1 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Transmembrane serine/threonine kinase activin type-1 receptor forming an activin receptor complex with activin receptor type-2 (ACVR2A or ACVR2B). Transduces the activin signal from the cell surface to the cytoplasm and is thus regulating a many physiological and pathological processes including neuronal differentiation and neuronal survival, hair follicle development and cycling, FSH production by the pituitary gland, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. Activin is also thought to have a paracrine or autocrine role in follicular development in the ovary. Within the receptor complex, type-2 receptors (ACVR2A and/or ACVR2B) act as a primary activin receptors whereas the type-1 receptors like ACVR1B act as downstream transducers of activin signals. Activin binds to type-2 receptor at the plasma membrane and activates its serine-threonine kinase. The activated receptor type-2 then phosphorylates and activates the type-1 receptor such as ACVR1B. Once activated, the type-1 receptor binds and phosphorylates the SMAD proteins SMAD2 and SMAD3, on serine residues of the C-terminal tail. Soon after their association with the activin receptor and subsequent phosphorylation, SMAD2 and SMAD3 are released into the cytoplasm where they interact with the common partner SMAD4. This SMAD complex translocates into the nucleus where it mediates activin-induced transcription. Inhibitory SMAD7, which is recruited to ACVR1B through FKBP1A, can prevent the association of SMAD2 and SMAD3 with the activin receptor complex, thereby blocking the activin signal. Activin signal transduction is also antagonized by the binding to the receptor of inhibin-B via the IGSF1 inhibin coreceptor. ACVR1B also phosphorylates TDP2
- Specific Function
- activin binding
- Gene Name
- ACVR1B
- Uniprot ID
- P36896
- Uniprot Name
- Activin receptor type-1B
- Molecular Weight
- 56806.05 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Bone morphogenetic protein (BMP) type I receptor that is involved in a wide variety of biological processes, including bone, heart, cartilage, nervous, and reproductive system development and regulation (PubMed:20628059, PubMed:22977237). As a type I receptor, forms heterotetrameric receptor complexes with the type II receptors AMHR2, ACVR2A or ACVR2B (PubMed:17911401). Upon binding of ligands such as BMP7 or GDF2/BMP9 to the heteromeric complexes, type II receptors transphosphorylate ACVR1 intracellular domain (PubMed:25354296). In turn, ACVR1 kinase domain is activated and subsequently phosphorylates SMAD1/5/8 proteins that transduce the signal (PubMed:9748228). In addition to its role in mediating BMP pathway-specific signaling, suppresses TGFbeta/activin pathway signaling by interfering with the binding of activin to its type II receptor (PubMed:17911401). Besides canonical SMAD signaling, can activate non-canonical pathways such as p38 mitogen-activated protein kinases/MAPKs (By similarity). May promote the expression of HAMP, potentially via its interaction with BMP6 (By similarity)
- Specific Function
- activin binding
- Gene Name
- ACVR1
- Uniprot ID
- Q04771
- Uniprot Name
- Activin receptor type-1
- Molecular Weight
- 57152.41 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Catalyzes the transport of the major hydrophobic bile salts, such as taurine and glycine-conjugated cholic acid across the canalicular membrane of hepatocytes in an ATP-dependent manner, therefore participates in hepatic bile acid homeostasis and consequently to lipid homeostasis through regulation of biliary lipid secretion in a bile salts dependent manner (PubMed:15791618, PubMed:16332456, PubMed:18985798, PubMed:19228692, PubMed:20010382, PubMed:20398791, PubMed:22262466, PubMed:24711118, PubMed:29507376, PubMed:32203132). Transports taurine-conjugated bile salts more rapidly than glycine-conjugated bile salts (PubMed:16332456). Also transports non-bile acid compounds, such as pravastatin and fexofenadine in an ATP-dependent manner and may be involved in their biliary excretion (PubMed:15901796, PubMed:18245269)
- Specific Function
- ABC-type bile acid transporter activity
- Gene Name
- ABCB11
- Uniprot ID
- O95342
- Uniprot Name
- Bile salt export pump
- Molecular Weight
- 146405.83 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Not Available
- Specific Function
- asparagine synthase (glutamine-hydrolyzing) activity
- Gene Name
- ASNS
- Uniprot ID
- P08243
- Uniprot Name
- Asparagine synthetase [glutamine-hydrolyzing]
- Molecular Weight
- 64369.39 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Serine/threonine-protein kinase that acts like an antiapoptotic protein that counters TRAIL/TNFSF10-induced apoptosis by inducing phosphorylation of BIRC5 at 'Thr-34'
- Specific Function
- ATP binding
- Gene Name
- CDK15
- Uniprot ID
- Q96Q40
- Uniprot Name
- Cyclin-dependent kinase 15
- Molecular Weight
- 49022.64 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- ADP:ATP antiporter that mediates import of ADP into the mitochondrial matrix for ATP synthesis, and export of ATP out to fuel the cell (PubMed:21586654, PubMed:27693233). Cycles between the cytoplasmic-open state (c-state) and the matrix-open state (m-state): operates by the alternating access mechanism with a single substrate-binding site intermittently exposed to either the cytosolic (c-state) or matrix (m-state) side of the inner mitochondrial membrane (By similarity). In addition to its ADP:ATP antiporter activity, also involved in mitochondrial uncoupling and mitochondrial permeability transition pore (mPTP) activity (PubMed:31883789). Plays a role in mitochondrial uncoupling by acting as a proton transporter: proton transport uncouples the proton flows via the electron transport chain and ATP synthase to reduce the efficiency of ATP production and cause mitochondrial thermogenesis (By similarity). Proton transporter activity is inhibited by ADP:ATP antiporter activity, suggesting that SLC25A4/ANT1 acts as a master regulator of mitochondrial energy output by maintaining a delicate balance between ATP production (ADP:ATP antiporter activity) and thermogenesis (proton transporter activity) (By similarity). Proton transporter activity requires free fatty acids as cofactor, but does not transport it (By similarity). Also plays a key role in mPTP opening, a non-specific pore that enables free passage of the mitochondrial membranes to solutes of up to 1.5 kDa, and which contributes to cell death (PubMed:31883789). It is however unclear if SLC25A4/ANT1 constitutes a pore-forming component of mPTP or regulates it (By similarity). Acts as a regulator of mitophagy independently of ADP:ATP antiporter activity: promotes mitophagy via interaction with TIMM44, leading to inhibit the presequence translocase TIMM23, thereby promoting stabilization of PINK1 (By similarity)
- Specific Function
- adenine transmembrane transporter activity
- Gene Name
- SLC25A4
- Uniprot ID
- P12235
- Uniprot Name
- ADP/ATP translocase 1
- Molecular Weight
- 33064.265 Da
References
- Walther T, Tschope C, Sterner-Kock A, Westermann D, Heringer-Walther S, Riad A, Nikolic A, Wang Y, Ebermann L, Siems WE, Bader M, Shakibaei M, Schultheiss HP, Dorner A: Accelerated mitochondrial adenosine diphosphate/adenosine triphosphate transport improves hypertension-induced heart disease. Circulation. 2007 Jan 23;115(3):333-44. Epub 2007 Jan 8. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Subunit of the beta-cell ATP-sensitive potassium channel (KATP). Regulator of ATP-sensitive K(+) channels and insulin release
- Specific Function
- ABC-type transporter activity
- Gene Name
- ABCC8
- Uniprot ID
- Q09428
- Uniprot Name
- ATP-binding cassette sub-family C member 8
- Molecular Weight
- 176990.36 Da
References
- Nakamura A, Kawahito S, Kawano T, Nazari H, Takahashi A, Kitahata H, Nakaya Y, Oshita S: Differential effects of etomidate and midazolam on vascular adenosine triphosphate-sensitive potassium channels: isometric tension and patch clamp studies. Anesthesiology. 2007 Mar;106(3):515-22. [Article]
- Bienengraeber M, Warltier DC, Bosnjak ZJ, Stadnicka A: Mechanism of cardiac sarcolemmal adenosine triphosphate-sensitive potassium channel activation by isoflurane in a heterologous expression system. Anesthesiology. 2006 Sep;105(3):534-40. [Article]
- Bryan J, Munoz A, Zhang X, Dufer M, Drews G, Krippeit-Drews P, Aguilar-Bryan L: ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Pflugers Arch. 2007 Feb;453(5):703-18. Epub 2006 Aug 8. [Article]
- Tanaka K, Kawano T, Nakamura A, Nazari H, Kawahito S, Oshita S, Takahashi A, Nakaya Y: Isoflurane activates sarcolemmal adenosine triphosphate-sensitive potassium channels in vascular smooth muscle cells: a role for protein kinase A. Anesthesiology. 2007 May;106(5):984-91. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- One of the enzymes of the urea cycle, the metabolic pathway transforming neurotoxic amonia produced by protein catabolism into inocuous urea in the liver of ureotelic animals. Catalyzes the formation of arginosuccinate from aspartate, citrulline and ATP and together with ASL it is responsible for the biosynthesis of arginine in most body tissues
- Specific Function
- amino acid binding
- Gene Name
- ASS1
- Uniprot ID
- P00966
- Uniprot Name
- Argininosuccinate synthase
- Molecular Weight
- 46530.055 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Catalytic component of the m-AAA protease, a protease that plays a key role in proteostasis of inner mitochondrial membrane proteins, and which is essential for axonal and neuron development (PubMed:19748354, PubMed:28396416, PubMed:29932645, PubMed:30683687, PubMed:31327635, PubMed:37917749, PubMed:38157846). AFG3L2 possesses both ATPase and protease activities: the ATPase activity is required to unfold substrates, threading them into the internal proteolytic cavity for hydrolysis into small peptide fragments (PubMed:19748354, PubMed:31327635). The m-AAA protease carries out quality control in the inner membrane of the mitochondria by mediating degradation of mistranslated or misfolded polypeptides (PubMed:26504172, PubMed:30683687, PubMed:34718584). The m-AAA protease complex also promotes the processing and maturation of mitochondrial proteins, such as MRPL32/bL32m, PINK1 and SP7 (PubMed:22354088, PubMed:29932645, PubMed:30252181). Mediates protein maturation of the mitochondrial ribosomal subunit MRPL32/bL32m by catalyzing the cleavage of the presequence of MRPL32/bL32m prior to assembly into the mitochondrial ribosome (PubMed:29932645). Required for SPG7 maturation into its active mature form after SPG7 cleavage by mitochondrial-processing peptidase (MPP) (PubMed:30252181). Required for the maturation of PINK1 into its 52kDa mature form after its cleavage by mitochondrial-processing peptidase (MPP) (PubMed:22354088). Acts as a regulator of calcium in neurons by mediating degradation of SMDT1/EMRE before its assembly with the uniporter complex, limiting the availability of SMDT1/EMRE for MCU assembly and promoting efficient assembly of gatekeeper subunits with MCU (PubMed:27642048, PubMed:28396416). Promotes the proteolytic degradation of GHITM upon hyperpolarization of mitochondria: progressive GHITM degradation leads to respiratory complex I degradation and broad reshaping of the mitochondrial proteome by AFG3L2 (PubMed:35912435). Also acts as a regulator of mitochondrial glutathione homeostasis by mediating cleavage and degradation of SLC25A39 (PubMed:37917749, PubMed:38157846). SLC25A39 cleavage is prevented when SLC25A39 binds iron-sulfur (PubMed:37917749, PubMed:38157846). Involved in the regulation of OMA1-dependent processing of OPA1 (PubMed:17615298, PubMed:29545505, PubMed:30252181, PubMed:30683687, PubMed:32600459). May act by mediating processing of OMA1 precursor, participating in OMA1 maturation (PubMed:29545505)
- Specific Function
- ATP binding
- Gene Name
- AFG3L2
- Uniprot ID
- Q9Y4W6
- Uniprot Name
- Mitochondrial inner membrane m-AAA protease component AFG3L2
- Molecular Weight
- 88583.03 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Specifically phosphorylates the agonist-occupied form of the beta-adrenergic and closely related receptors
- Specific Function
- ATP binding
- Gene Name
- GRK3
- Uniprot ID
- P35626
- Uniprot Name
- G protein-coupled receptor kinase 3
- Molecular Weight
- 79709.085 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Receptor for anti-Muellerian hormone
- Specific Function
- anti-Mullerian hormone receptor activity
- Gene Name
- AMHR2
- Uniprot ID
- Q16671
- Uniprot Name
- Anti-Muellerian hormone type-2 receptor
- Molecular Weight
- 62749.02 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Non-receptor tyrosine-protein and serine/threonine-protein kinase that is implicated in cell spreading and migration, cell survival, cell growth and proliferation. Transduces extracellular signals to cytosolic and nuclear effectors. Phosphorylates AKT1, AR, MCF2, WASL and WWOX. Implicated in trafficking and clathrin-mediated endocytosis through binding to epidermal growth factor receptor (EGFR) and clathrin. Binds to both poly- and mono-ubiquitin and regulates ligand-induced degradation of EGFR, thereby contributing to the accumulation of EGFR at the limiting membrane of early endosomes. Downstream effector of CDC42 which mediates CDC42-dependent cell migration via phosphorylation of BCAR1. May be involved both in adult synaptic function and plasticity and in brain development. Activates AKT1 by phosphorylating it on 'Tyr-176'. Phosphorylates AR on 'Tyr-267' and 'Tyr-363' thereby promoting its recruitment to androgen-responsive enhancers (AREs). Phosphorylates WWOX on 'Tyr-287'. Phosphorylates MCF2, thereby enhancing its activity as a guanine nucleotide exchange factor (GEF) toward Rho family proteins. Contributes to the control of AXL receptor levels. Confers metastatic properties on cancer cells and promotes tumor growth by negatively regulating tumor suppressor such as WWOX and positively regulating pro-survival factors such as AKT1 and AR. Phosphorylates WASP (PubMed:20110370)
- Specific Function
- ATP binding
- Gene Name
- TNK2
- Uniprot ID
- Q07912
- Uniprot Name
- Activated CDC42 kinase 1
- Molecular Weight
- 114567.605 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling. Mediates responses to increased cellular Ca(2+)/calmodulin levels (By similarity). May be involved in regulatory processes in the central nervous system. May play a role in memory and learning. Plays a role in the regulation of the circadian rhythm of daytime contrast sensitivity probably by modulating the rhythmic synthesis of cyclic AMP in the retina (By similarity)
- Specific Function
- adenylate cyclase activity
- Gene Name
- ADCY1
- Uniprot ID
- Q08828
- Uniprot Name
- Adenylate cyclase type 1
- Molecular Weight
- 123438.85 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Translocates drugs and phospholipids across the membrane (PubMed:2897240, PubMed:35970996, PubMed:8898203, PubMed:9038218). Catalyzes the flop of phospholipids from the cytoplasmic to the exoplasmic leaflet of the apical membrane. Participates mainly to the flop of phosphatidylcholine, phosphatidylethanolamine, beta-D-glucosylceramides and sphingomyelins (PubMed:8898203). Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells (PubMed:2897240, PubMed:35970996, PubMed:9038218)
- Specific Function
- ABC-type xenobiotic transporter activity
- Gene Name
- ABCB1
- Uniprot ID
- P08183
- Uniprot Name
- ATP-dependent translocase ABCB1
- Molecular Weight
- 141477.255 Da
References
- Lage H: MDR1/P-glycoprotein (ABCB1) as target for RNA interference-mediated reversal of multidrug resistance. Curr Drug Targets. 2006 Jul;7(7):813-21. [Article]
- Gardner ER, Burger H, van Schaik RH, van Oosterom AT, de Bruijn EA, Guetens G, Prenen H, de Jong FA, Baker SD, Bates SE, Figg WD, Verweij J, Sparreboom A, Nooter K: Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib. Clin Pharmacol Ther. 2006 Aug;80(2):192-201. [Article]
- Blume H, Donath F, Warnke A, Schug BS: Pharmacokinetic drug interaction profiles of proton pump inhibitors. Drug Saf. 2006;29(9):769-84. doi: 10.2165/00002018-200629090-00002. [Article]
- Gervasini G, Carrillo JA, Garcia M, San Jose C, Cabanillas A, Benitez J: Adenosine triphosphate-binding cassette B1 (ABCB1) (multidrug resistance 1) G2677T/A gene polymorphism is associated with high risk of lung cancer. Cancer. 2006 Dec 15;107(12):2850-7. [Article]
- Fukui N, Suzuki Y, Sawamura K, Sugai T, Watanabe J, Inoue Y, Someya T: Dose-dependent effects of the 3435 C>T genotype of ABCB1 gene on the steady-state plasma concentration of fluvoxamine in psychiatric patients. Ther Drug Monit. 2007 Apr;29(2):185-9. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Catalyzes the efflux of phospholipids such as sphingomyelin, cholesterol and its oxygenated derivatives like 7beta-hydroxycholesterol and this transport is coupled to hydrolysis of ATP (PubMed:17408620, PubMed:24576892). The lipid efflux is ALB-dependent (PubMed:16702602). Is an active component of the macrophage lipid export complex. Could also be involved in intracellular lipid transport processes. The role in cellular lipid homeostasis may not be limited to macrophages. Prevents cell death by transporting cytotoxic 7beta-hydroxycholesterol (PubMed:17408620)
- Specific Function
- ABC-type sterol transporter activity
- Gene Name
- ABCG1
- Uniprot ID
- P45844
- Uniprot Name
- ATP-binding cassette sub-family G member 1
- Molecular Weight
- 75591.275 Da
References
- Lage H: MDR1/P-glycoprotein (ABCB1) as target for RNA interference-mediated reversal of multidrug resistance. Curr Drug Targets. 2006 Jul;7(7):813-21. [Article]
- Materna V, Stege A, Surowiak P, Priebsch A, Lage H: RNA interference-triggered reversal of ABCC2-dependent cisplatin resistance in human cancer cells. Biochem Biophys Res Commun. 2006 Sep 15;348(1):153-7. Epub 2006 Jul 14. [Article]
- Thomas AC, Cullup T, Norgett EE, Hill T, Barton S, Dale BA, Sprecher E, Sheridan E, Taylor AE, Wilroy RS, DeLozier C, Burrows N, Goodyear H, Fleckman P, Stephens KG, Mehta L, Watson RM, Graham R, Wolf R, Slavotinek A, Martin M, Bourn D, Mein CA, O'Toole EA, Kelsell DP: ABCA12 is the major harlequin ichthyosis gene. J Invest Dermatol. 2006 Nov;126(11):2408-13. Epub 2006 Aug 10. [Article]
- Girardin F: Membrane transporter proteins: a challenge for CNS drug development. Dialogues Clin Neurosci. 2006;8(3):311-21. [Article]
- Pinkett HW, Lee AT, Lum P, Locher KP, Rees DC: An inward-facing conformation of a putative metal-chelate-type ABC transporter. Science. 2007 Jan 19;315(5810):373-7. Epub 2006 Dec 7. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- ATP-dependent transporter of the ATP-binding cassette (ABC) family that binds and hydrolyzes ATP to enable active transport of various substrates including many drugs, toxicants and endogenous compound across cell membranes. Transports a wide variety of conjugated organic anions such as sulfate-, glucuronide- and glutathione (GSH)-conjugates of endo- and xenobiotics substrates (PubMed:10220572, PubMed:10421658, PubMed:11500505, PubMed:16332456). Mediates hepatobiliary excretion of mono- and bis-glucuronidated bilirubin molecules and therefore play an important role in bilirubin detoxification (PubMed:10421658). Mediates also hepatobiliary excretion of others glucuronide conjugates such as 17beta-estradiol 17-glucosiduronic acid and leukotriene C4 (PubMed:11500505). Transports sulfated bile salt such as taurolithocholate sulfate (PubMed:16332456). Transports various anticancer drugs, such as anthracycline, vinca alkaloid and methotrexate and HIV-drugs such as protease inhibitors (PubMed:10220572, PubMed:11500505, PubMed:12441801). Confers resistance to several anti-cancer drugs including cisplatin, doxorubicin, epirubicin, methotrexate, etoposide and vincristine (PubMed:10220572, PubMed:11500505)
- Specific Function
- ABC-type glutathione S-conjugate transporter activity
- Gene Name
- ABCC2
- Uniprot ID
- Q92887
- Uniprot Name
- ATP-binding cassette sub-family C member 2
- Molecular Weight
- 174205.64 Da
References
- Materna V, Stege A, Surowiak P, Priebsch A, Lage H: RNA interference-triggered reversal of ABCC2-dependent cisplatin resistance in human cancer cells. Biochem Biophys Res Commun. 2006 Sep 15;348(1):153-7. Epub 2006 Jul 14. [Article]
- Rau T, Erney B, Gores R, Eschenhagen T, Beck J, Langer T: High-dose methotrexate in pediatric acute lymphoblastic leukemia: impact of ABCC2 polymorphisms on plasma concentrations. Clin Pharmacol Ther. 2006 Nov;80(5):468-76. [Article]
- Li GX, Pei QL, Gao Y, Liu KM, Nie JS, Han G, Qiu YL, Zhang WP: Protective effects of hepatocellular canalicular conjugate export pump (Mrp2) on sodium arsenite-induced hepatic dysfunction in rats. Exp Toxicol Pathol. 2007 Aug;58(6):447-53. Epub 2007 Apr 30. [Article]
Enzymes
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Substrate
- General Function
- Catalyzes the phosphorylation of the purine nucleoside adenosine at the 5' position in an ATP-dependent manner. Serves as a potential regulator of concentrations of extracellular adenosine and intracellular adenine nucleotides
- Specific Function
- adenosine kinase activity
- Gene Name
- ADK
- Uniprot ID
- P55263
- Uniprot Name
- Adenosine kinase
- Molecular Weight
- 40545.075 Da
References
- Park J, Gupta RS: Adenosine kinase and ribokinase--the RK family of proteins. Cell Mol Life Sci. 2008 Sep;65(18):2875-96. doi: 10.1007/s00018-008-8123-1. [Article]
- Leoncini R, Vannoni D, Santoro A, Giglioni S, Carli R, Marinello E: Adenosine kinase from rat liver: new biochemical properties. Nucleosides Nucleotides Nucleic Acids. 2006;25(9-11):1107-12. [Article]
Drug created at June 13, 2005 13:24 / Updated at October 09, 2024 11:18