Aprobarbital

Identification

Generic Name
Aprobarbital
DrugBank Accession Number
DB01352
Background

Aprobarbital is a barbiturate derivative synthesized in the 1920s by Ernst Preiswerk. It was determined that the substance was capable of demonstrating sedative, hypnotic, and anticonvulsant effects. A primary treatment indicated for the use of aprobarbital was subsequently insomnia. Aprobarbital was never as widely used as more common barbiturate derivatives such as phenobarbital and is now rarely prescribed.

Type
Small Molecule
Groups
Experimental, Illicit
Structure
Weight
Average: 210.2298
Monoisotopic: 210.100442324
Chemical Formula
C10H14N2O3
Synonyms
  • 5-(1-methylethyl)-5-(2-propenyl)-2,4,6(1H,3H,5H)-pyrimidinetrione
  • 5-allyl-5-isopropylbarbituric acid
  • 5-allyl-5-isopropylpyrimidine-2,4,6(1H,3H,5H)-trione
  • 5-isopropyl-5-allylbarbituric acid
  • Allypropymal
  • Aprobarbital
  • Aprobarbitale
  • Aprobarbitalum

Pharmacology

Indication

Not Available

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Not Available

Mechanism of action

Aprobarbital (like all barbiturates) works by binding to the GABAA receptor at either the alpha or the beta sub unit. These are binding sites that are distinct from GABA itself and also distinct from the benzodiazepine binding site. Like benzodiazepines, barbiturates potentiate the effect of GABA at this receptor. This GABAA receptor binding decreases input resistance, depresses burst and tonic firing, especially in ventrobasal and intralaminar neurons, while at the same time increasing burst duration and mean conductance at individual chloride channels; this increases both the amplitude and decay time of inhibitory postsynaptic currents. In addition to this GABA-ergic effect, barbiturates also block the AMPA receptor, a subtype of glutamate receptor. Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. Aprobarbital also appears to bind neuronal nicotinic acetylcholine receptors.

TargetActionsOrganism
AGamma-aminobutyric acid receptor subunit alpha-1
potentiator
Humans
AGamma-aminobutyric acid receptor subunit alpha-2
potentiator
Humans
AGamma-aminobutyric acid receptor subunit alpha-3
potentiator
Humans
AGamma-aminobutyric acid receptor subunit alpha-4
potentiator
Humans
AGamma-aminobutyric acid receptor subunit alpha-5
potentiator
Humans
AGamma-aminobutyric acid receptor subunit alpha-6
potentiator
Humans
UNeuronal acetylcholine receptor subunit alpha-4
antagonist
Humans
UNeuronal acetylcholine receptor subunit alpha-7
antagonist
Humans
UGlutamate receptor 2
antagonist
Humans
UGlutamate receptor ionotropic, kainate 2
antagonist
Humans
Absorption

Not Available

Volume of distribution

Not Available

Protein binding

Not Available

Metabolism
Not Available
Route of elimination

Not Available

Half-life

Not Available

Clearance

Not Available

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

Not Available

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
1,2-BenzodiazepineThe risk or severity of CNS depression can be increased when Aprobarbital is combined with 1,2-Benzodiazepine.
AbemaciclibThe metabolism of Abemaciclib can be increased when combined with Aprobarbital.
AcalabrutinibThe metabolism of Acalabrutinib can be increased when combined with Aprobarbital.
AcenocoumarolThe metabolism of Acenocoumarol can be increased when combined with Aprobarbital.
AcetazolamideThe risk or severity of CNS depression can be increased when Acetazolamide is combined with Aprobarbital.
Food Interactions
Not Available

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
Product Ingredients
IngredientUNIICASInChI Key
Aprobarbital sodium6T90V76R18125-88-2HLFOAHHCDKJHCJ-UHFFFAOYSA-M
International/Other Brands
Alurate

Categories

ATC Codes
N05CA05 — Aprobarbital
Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as barbituric acid derivatives. These are compounds containing a perhydropyrimidine ring substituted at C-2, -4 and -6 by oxo groups.
Kingdom
Organic compounds
Super Class
Organoheterocyclic compounds
Class
Diazines
Sub Class
Pyrimidines and pyrimidine derivatives
Direct Parent
Barbituric acid derivatives
Alternative Parents
N-acyl ureas / Diazinanes / Dicarboximides / Azacyclic compounds / Organopnictogen compounds / Organonitrogen compounds / Organic oxides / Hydrocarbon derivatives / Carbonyl compounds
Substituents
1,3-diazinane / Aliphatic heteromonocyclic compound / Azacycle / Barbiturate / Carbonic acid derivative / Carbonyl group / Carboxylic acid derivative / Dicarboximide / Hydrocarbon derivative / N-acyl urea
Molecular Framework
Aliphatic heteromonocyclic compounds
External Descriptors
barbiturates (CHEBI:2791)
Affected organisms
Not Available

Chemical Identifiers

UNII
Q0YKG9L6RF
CAS number
77-02-1
InChI Key
UORJNBVJVRLXMQ-UHFFFAOYSA-N
InChI
InChI=1S/C10H14N2O3/c1-4-5-10(6(2)3)7(13)11-9(15)12-8(10)14/h4,6H,1,5H2,2-3H3,(H2,11,12,13,14,15)
IUPAC Name
5-(prop-2-en-1-yl)-5-(propan-2-yl)-1,3-diazinane-2,4,6-trione
SMILES
CC(C)C1(CC=C)C(=O)NC(=O)NC1=O

References

General References
Not Available
Human Metabolome Database
HMDB0015441
KEGG Drug
D00698
KEGG Compound
C07826
PubChem Compound
6464
PubChem Substance
46504558
ChemSpider
6221
RxNav
17381
ChEBI
2791
ChEMBL
CHEMBL7863
ZINC
ZINC000018167382
Therapeutic Targets Database
DAP001034
PharmGKB
PA164754809
Wikipedia
Aprobarbital

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage Forms
Not Available
Prices
Not Available
Patents
Not Available

Properties

State
Solid
Experimental Properties
PropertyValueSource
melting point (°C)141 °CPhysProp
water solubility4080 mg/L (at 25 °C)YALKOWSKY,SH & DANNENFELSER,RM (1992)
logP1.15HANSCH,C ET AL. (1995)
pKa7.99 (at 25 °C)KORTUM,G ET AL (1961)
Predicted Properties
PropertyValueSource
Water Solubility5.17 mg/mLALOGPS
logP1.24ALOGPS
logP1.14Chemaxon
logS-1.6ALOGPS
pKa (Strongest Acidic)7.48Chemaxon
Physiological Charge0Chemaxon
Hydrogen Acceptor Count3Chemaxon
Hydrogen Donor Count2Chemaxon
Polar Surface Area75.27 Å2Chemaxon
Rotatable Bond Count3Chemaxon
Refractivity53.45 m3·mol-1Chemaxon
Polarizability20.5 Å3Chemaxon
Number of Rings1Chemaxon
Bioavailability1Chemaxon
Rule of FiveYesChemaxon
Ghose FilterYesChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleNoChemaxon
Predicted ADMET Features
PropertyValueProbability
Human Intestinal Absorption+0.9062
Blood Brain Barrier+0.9598
Caco-2 permeable-0.607
P-glycoprotein substrateSubstrate0.5125
P-glycoprotein inhibitor INon-inhibitor0.5485
P-glycoprotein inhibitor IINon-inhibitor0.9908
Renal organic cation transporterNon-inhibitor0.9203
CYP450 2C9 substrateNon-substrate0.7703
CYP450 2D6 substrateNon-substrate0.8767
CYP450 3A4 substrateNon-substrate0.71
CYP450 1A2 substrateNon-inhibitor0.8675
CYP450 2C9 inhibitorNon-inhibitor0.9041
CYP450 2D6 inhibitorNon-inhibitor0.9395
CYP450 2C19 inhibitorNon-inhibitor0.8727
CYP450 3A4 inhibitorNon-inhibitor0.9001
CYP450 inhibitory promiscuityLow CYP Inhibitory Promiscuity0.9697
Ames testNon AMES toxic0.5669
CarcinogenicityNon-carcinogens0.8911
BiodegradationNot ready biodegradable0.9885
Rat acute toxicity3.2677 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.9905
hERG inhibition (predictor II)Non-inhibitor0.9803
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397)

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted GC-MS Spectrum - GC-MSPredicted GC-MSsplash10-00kf-6900000000-8e2fadd8c703abf57cab
GC-MS Spectrum - EI-BGC-MSsplash10-014l-9600000000-9ab2ab6ff36ccb20312f
GC-MS Spectrum - CI-BGC-MSsplash10-03di-0090000000-b13a014a6928d0747567
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-01ot-0940000000-ac44616e41a378826621
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-0a4i-5190000000-a4d4833b680821c0c03a
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-0006-9000000000-2e550409b5c0ec1c4276
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-01xw-8920000000-2e6e579aab690f1cce83
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-0006-9200000000-6267bdd5447707a8b83e
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-01c3-7900000000-de59db73f7da1367d3d7
Predicted 1H NMR Spectrum1D NMRNot Applicable
Predicted 13C NMR Spectrum1D NMRNot Applicable
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-150.9848253
predicted
DarkChem Lite v0.1.0
[M-H]-150.7484253
predicted
DarkChem Lite v0.1.0
[M-H]-143.97876
predicted
DeepCCS 1.0 (2019)
[M+H]+151.8501253
predicted
DarkChem Lite v0.1.0
[M+H]+151.6997253
predicted
DarkChem Lite v0.1.0
[M+H]+147.80678
predicted
DeepCCS 1.0 (2019)
[M+Na]+151.3680253
predicted
DarkChem Lite v0.1.0
[M+Na]+156.96576
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Potentiator
General Function
Alpha subunit of the heteropentameric ligand-gated chloride channel gated by Gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the brain (PubMed:23909897, PubMed:25489750, PubMed:29950725, PubMed:30602789). GABA-gated chloride channels, also named GABA(A) receptors (GABAAR), consist of five subunits arranged around a central pore and contain GABA active binding site(s) located at the alpha and beta subunit interface(s) (PubMed:29950725, PubMed:30602789). When activated by GABA, GABAARs selectively allow the flow of chloride anions across the cell membrane down their electrochemical gradient (PubMed:23909897, PubMed:29950725, PubMed:30602789). Alpha-1/GABRA1-containing GABAARs are largely synaptic (By similarity). Chloride influx into the postsynaptic neuron following GABAAR opening decreases the neuron ability to generate a new action potential, thereby reducing nerve transmission (By similarity). GABAARs containing alpha-1 and beta-2 or -3 subunits exhibit synaptogenic activity; the gamma-2 subunit being necessary but not sufficient to induce rapid synaptic contacts formation (PubMed:23909897, PubMed:25489750). GABAARs function also as histamine receptor where histamine binds at the interface of two neighboring beta subunits and potentiates GABA response (By similarity). GABAARs containing alpha, beta and epsilon subunits also permit spontaneous chloride channel activity while preserving the structural information required for GABA-gated openings (By similarity). Alpha-1-mediated plasticity in the orbitofrontal cortex regulates context-dependent action selection (By similarity). Together with rho subunits, may also control neuronal and glial GABAergic transmission in the cerebellum (By similarity)
Specific Function
Gaba-a receptor activity
Gene Name
GABRA1
Uniprot ID
P14867
Uniprot Name
Gamma-aminobutyric acid receptor subunit alpha-1
Molecular Weight
51801.395 Da
References
  1. Whiting PJ: The GABAA receptor gene family: new opportunities for drug development. Curr Opin Drug Discov Devel. 2003 Sep;6(5):648-57. [Article]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
  3. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  4. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Potentiator
General Function
Alpha subunit of the heteropentameric ligand-gated chloride channel gated by gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the brain (PubMed:10449790, PubMed:29961870, PubMed:31032849). GABA-gated chloride channels, also named GABA(A) receptors (GABAAR), consist of five subunits arranged around a central pore and contain GABA active binding site(s) located at the alpha and beta subunit interfaces (By similarity). When activated by GABA, GABAARs selectively allow the flow of chloride anions across the cell membrane down their electrochemical gradient (PubMed:10449790). Chloride influx into the postsynaptic neuron following GABAAR opening decreases the neuron ability to generate a new action potential, thereby reducing nerve transmission (By similarity). The alpha-2 subunit exhibits synaptogenic activity together with beta-2 and very little to no activity together with beta-3, the gamma-2 subunit being necessary but not sufficient to induce rapid synaptic contacts formation (By similarity)
Specific Function
Benzodiazepine receptor activity
Gene Name
GABRA2
Uniprot ID
P47869
Uniprot Name
Gamma-aminobutyric acid receptor subunit alpha-2
Molecular Weight
51325.85 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Potentiator
General Function
Alpha subunit of the heteropentameric ligand-gated chloride channel gated by gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the brain (PubMed:16412217, PubMed:29053855). GABA-gated chloride channels, also named GABA(A) receptors (GABAAR), consist of five subunits arranged around a central pore and contain GABA active binding site(s) located at the alpha and beta subunit interface(s) (By similarity). When activated by GABA, GABAARs selectively allow the flow of chloride anions across the cell membrane down their electrochemical gradient (PubMed:16412217, PubMed:29053855). Chloride influx into the postsynaptic neuron following GABAAR opening decreases the neuron ability to generate a new action potential, thereby reducing nerve transmission (PubMed:16412217, PubMed:29053855)
Specific Function
Benzodiazepine receptor activity
Gene Name
GABRA3
Uniprot ID
P34903
Uniprot Name
Gamma-aminobutyric acid receptor subunit alpha-3
Molecular Weight
55164.055 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Potentiator
General Function
Alpha subunit of the heteropentameric ligand-gated chloride channel gated by gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the brain (PubMed:35355020). GABA-gated chloride channels, also named GABA(A) receptors (GABAAR), consist of five subunits arranged around a central pore and contain GABA active binding site(s) located at the alpha and beta subunit interface(s) (PubMed:35355020). When activated by GABA, GABAARs selectively allow the flow of chloride anions across the cell membrane down their electrochemical gradient (PubMed:35355020). GABAARs containing alpha-4 are predominantly extrasynaptic, contributing to tonic inhibition in dentate granule cells and thalamic relay neurons (By similarity). Extrasynaptic alpha-4-containing GABAARs control levels of excitability and network activity (By similarity). GABAAR containing alpha-4-beta-3-delta subunits can simultaneously bind GABA and histamine where histamine binds at the interface of two neighboring beta subunits, which may be involved in the regulation of sleep and wakefulness (PubMed:35355020)
Specific Function
Benzodiazepine receptor activity
Gene Name
GABRA4
Uniprot ID
P48169
Uniprot Name
Gamma-aminobutyric acid receptor subunit alpha-4
Molecular Weight
61622.645 Da
References
  1. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Potentiator
General Function
Alpha subunit of the heteropentameric ligand-gated chloride channel gated by gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the brain (PubMed:14993607, PubMed:29961870, PubMed:30140029, PubMed:31056671). GABA-gated chloride channels, also named GABA(A) receptors (GABAAR), consist of five subunits arranged around a central pore and contain GABA active binding site(s) located at the alpha and beta subunit interface(s) (PubMed:30140029). When activated by GABA, GABAARs selectively allow the flow of chloride anions across the cell membrane down their electrochemical gradient (PubMed:14993607, PubMed:30140029). GABAARs containing alpha-5/GABRA5 subunits are mainly extrasynaptic and contribute to the tonic GABAergic inhibition in the hippocampus (By similarity). Extrasynaptic alpha-5-containing GABAARs in CA1 pyramidal neurons play a role in learning and memory processes (By similarity)
Specific Function
Gaba receptor binding
Gene Name
GABRA5
Uniprot ID
P31644
Uniprot Name
Gamma-aminobutyric acid receptor subunit alpha-5
Molecular Weight
52145.645 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Potentiator
General Function
Alpha subunit of the heteropentameric ligand-gated chloride channel gated by gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the brain (PubMed:8632757). GABA-gated chloride channels, also named GABA(A) receptors (GABAAR), consist of five subunits arranged around a central pore and contain GABA active binding site(s) located at the alpha and beta subunit interface(s) (By similarity). When activated by GABA, GABAARs selectively allow the flow of chloride anions across the cell membrane down their electrochemical gradient (By similarity). Alpha-6/GABRA6 subunits are found at both synaptic and extrasynaptic sites (PubMed:8632757). Chloride influx into the postsynaptic neuron following GABAAR opening decreases the neuron ability to generate a new action potential, thereby reducing nerve transmission (By similarity). Extrasynaptic alpha-6-containing receptors contribute to the tonic GABAergic inhibition. Alpha-6 subunits are also present on glutamatergic synapses (By similarity)
Specific Function
Benzodiazepine receptor activity
Gene Name
GABRA6
Uniprot ID
Q16445
Uniprot Name
Gamma-aminobutyric acid receptor subunit alpha-6
Molecular Weight
51023.69 Da
References
  1. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
  2. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Antagonist
General Function
After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeable to sodium ions
Specific Function
Acetylcholine binding
Gene Name
CHRNA4
Uniprot ID
P43681
Uniprot Name
Neuronal acetylcholine receptor subunit alpha-4
Molecular Weight
69956.47 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Arias HR, Bhumireddy P: Anesthetics as chemical tools to study the structure and function of nicotinic acetylcholine receptors. Curr Protein Pept Sci. 2005 Oct;6(5):451-72. [Article]
  3. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Antagonist
General Function
After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The channel is blocked by alpha-bungarotoxin
Specific Function
Acetylcholine binding
Gene Name
CHRNA7
Uniprot ID
P36544
Uniprot Name
Neuronal acetylcholine receptor subunit alpha-7
Molecular Weight
56448.925 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Arias HR, Bhumireddy P: Anesthetics as chemical tools to study the structure and function of nicotinic acetylcholine receptors. Curr Protein Pept Sci. 2005 Oct;6(5):451-72. [Article]
  3. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Antagonist
General Function
Ionotropic glutamate receptor that functions as a ligand-gated cation channel, gated by L-glutamate and glutamatergic agonists such as alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), quisqualic acid, and kainic acid (PubMed:20614889, PubMed:31300657, PubMed:8003671). L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system and plays an important role in fast excitatory synaptic transmission (PubMed:14687553). Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse upon entry of monovalent and divalent cations such as sodium and calcium (PubMed:20614889, PubMed:8003671). The receptor then desensitizes rapidly and enters in a transient inactive state, characterized by the presence of bound agonist (By similarity). In the presence of CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of L-glutamate (By similarity). Through complex formation with NSG1, GRIP1 and STX12 controls the intracellular fate of AMPAR and the endosomal sorting of the GRIA2 subunit toward recycling and membrane targeting (By similarity)
Specific Function
Ampa glutamate receptor activity
Gene Name
GRIA2
Uniprot ID
P42262
Uniprot Name
Glutamate receptor 2
Molecular Weight
98820.32 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Antagonist
General Function
Ionotropic glutamate receptor that functions as a cation permeable ligand-gated ion channel, gated by L-glutamate and the glutamatergic agonist kainic acid. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist (PubMed:14511640, PubMed:28180184, PubMed:34375587, PubMed:7536611, PubMed:8730589). Modulates cell surface expression of NETO2. In association with GRIK3, involved in presynaptic facilitation of glutamate release at hippocampal mossy fiber synapses (By similarity)
Specific Function
Extracellularly glutamate-gated ion channel activity
Gene Name
GRIK2
Uniprot ID
Q13002
Uniprot Name
Glutamate receptor ionotropic, kainate 2
Molecular Weight
102582.475 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]

Enzymes

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inducer
General Function
A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981)
Specific Function
1,8-cineole 2-exo-monooxygenase activity
Gene Name
CYP3A4
Uniprot ID
P08684
Uniprot Name
Cytochrome P450 3A4
Molecular Weight
57342.67 Da
References
  1. Bibi Z: Role of cytochrome P450 in drug interactions. Nutr Metab (Lond). 2008 Oct 18;5:27. doi: 10.1186/1743-7075-5-27. [Article]
  2. Johannessen SI, Landmark CJ: Antiepileptic drug interactions - principles and clinical implications. Curr Neuropharmacol. 2010 Sep;8(3):254-67. doi: 10.2174/157015910792246254. [Article]

Drug created at July 06, 2007 19:48 / Updated at June 12, 2020 16:51