(S)-Warfarin

This drug entry is a stub and has not been fully annotated. It is scheduled to be annotated soon.

Identification

Generic Name
(S)-Warfarin
DrugBank Accession Number
DB14055
Background

Warfarin consists of a racemic mixture of two active enantiomers—R- and S- forms—each of which is cleared by different pathways. S-warfarin is 2-5 times more potent than the R-isomer in producing an anticoagulant response.1

Type
Small Molecule
Groups
Experimental, Investigational
Structure
Weight
Average: 308.3279
Monoisotopic: 308.104859
Chemical Formula
C19H16O4
Synonyms
  • (-)-Warfarin
  • (S)-4-Hydroxy-3-(3-oxo-1-phenylbutyl)-2-benzopyrone
  • 4-hydroxy-3-[(1S)-3-oxo-1-phenylbutyl]-2H-chromen-2-one
  • Levrowarfarin
  • S-Warfarin

Pharmacology

Indication

Not Available

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Not Available

Mechanism of action
Not Available
Absorption

Not Available

Volume of distribution

Not Available

Protein binding

Not Available

Metabolism
Not Available
Route of elimination

Not Available

Half-life

Not Available

Clearance

Not Available

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

Not Available

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
AbametapirThe serum concentration of (S)-Warfarin can be increased when it is combined with Abametapir.
AbataceptThe metabolism of (S)-Warfarin can be increased when combined with Abatacept.
AbciximabThe risk or severity of bleeding can be increased when Abciximab is combined with (S)-Warfarin.
AbirateroneThe metabolism of (S)-Warfarin can be decreased when combined with Abiraterone.
AbrocitinibThe metabolism of Abrocitinib can be decreased when combined with (S)-Warfarin.
Food Interactions
  • Avoid drastic dietary changes.
  • Avoid herbs and supplements with anticoagulant/antiplatelet activity. Examples include garlic, ginger, bilberry, danshen, piracetam, and ginkgo biloba.
  • Ensure consistent Vitamin K intake.

Categories

Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as 4-hydroxycoumarins. These are coumarins that contain one or more hydroxyl groups attached to C4-position the coumarin skeleton.
Kingdom
Organic compounds
Super Class
Phenylpropanoids and polyketides
Class
Coumarins and derivatives
Sub Class
Hydroxycoumarins
Direct Parent
4-hydroxycoumarins
Alternative Parents
1-benzopyrans / Pyranones and derivatives / Benzene and substituted derivatives / Vinylogous acids / Heteroaromatic compounds / Lactones / Ketones / Oxacyclic compounds / Organic oxides / Hydrocarbon derivatives
Substituents
1-benzopyran / 4-hydroxycoumarin / Aromatic heteropolycyclic compound / Benzenoid / Benzopyran / Carbonyl group / Heteroaromatic compound / Hydrocarbon derivative / Ketone / Lactone
Molecular Framework
Aromatic heteropolycyclic compounds
External Descriptors
4-hydroxy-3-(3-oxo-1-phenylbutyl)-1-benzopyran-2-one (CHEBI:87738)
Affected organisms
Not Available

Chemical Identifiers

UNII
HP31W7FNP4
CAS number
5543-57-7
InChI Key
PJVWKTKQMONHTI-HNNXBMFYSA-N
InChI
InChI=1S/C19H16O4/c1-12(20)11-15(13-7-3-2-4-8-13)17-18(21)14-9-5-6-10-16(14)23-19(17)22/h2-10,15,21H,11H2,1H3/t15-/m0/s1
IUPAC Name
4-hydroxy-3-[(1S)-3-oxo-1-phenylbutyl]-2H-chromen-2-one
SMILES
CC(=O)C[C@@H](C1=CC=CC=C1)C1=C(O)C2=C(OC1=O)C=CC=C2

References

General References
  1. Lane S, Al-Zubiedi S, Hatch E, Matthews I, Jorgensen AL, Deloukas P, Daly AK, Park BK, Aarons L, Ogungbenro K, Kamali F, Hughes D, Pirmohamed M: The population pharmacokinetics of R- and S-warfarin: effect of genetic and clinical factors. Br J Clin Pharmacol. 2012 Jan;73(1):66-76. doi: 10.1111/j.1365-2125.2011.04051.x. [Article]
ChemSpider
10533327
ChEBI
87738
ChEMBL
CHEMBL251074
ZINC
ZINC000100006264
PDBe Ligand
SWF
PDB Entries
1ha2 / 1og5 / 6wv3 / 6wv4 / 6wvb

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns
3CompletedOtherRelapsing Remitting Multiple Sclerosis (RRMS)1somestatusstop reasonjust information to hide
1CompletedOtherSolid Tumors1somestatusstop reasonjust information to hide

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage Forms
Not Available
Prices
Not Available
Patents
Not Available

Properties

State
Solid
Experimental Properties
Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.0472 mg/mLALOGPS
logP2.41ALOGPS
logP2.74Chemaxon
logS-3.8ALOGPS
pKa (Strongest Acidic)5.56Chemaxon
pKa (Strongest Basic)-6.9Chemaxon
Physiological Charge-1Chemaxon
Hydrogen Acceptor Count3Chemaxon
Hydrogen Donor Count1Chemaxon
Polar Surface Area63.6 Å2Chemaxon
Rotatable Bond Count4Chemaxon
Refractivity86.86 m3·mol-1Chemaxon
Polarizability32.03 Å3Chemaxon
Number of Rings3Chemaxon
Bioavailability1Chemaxon
Rule of FiveYesChemaxon
Ghose FilterYesChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleNoChemaxon
Predicted ADMET Features
Not Available

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted GC-MS Spectrum - GC-MSPredicted GC-MSsplash10-0udl-3290000000-3db2490b60e96d0bbb87
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-052e-2913000000-fde782d424423e4bd03d
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-0a4i-0009000000-87ce9c18c928684ac0b2
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-0f6x-0491000000-543528e76fcd5f44199f
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-0a4l-9387000000-f4b44dac255c3a599d71
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-00di-2930000000-fec151ec5964e1e5cff9
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-0ufu-3920000000-04f21e9c0039079269ab
Predicted 1H NMR Spectrum1D NMRNot Applicable
Predicted 13C NMR Spectrum1D NMRNot Applicable
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-184.494981
predicted
DarkChem Lite v0.1.0
[M-H]-168.0611
predicted
DeepCCS 1.0 (2019)
[M+H]+184.716781
predicted
DarkChem Lite v0.1.0
[M+H]+170.41908
predicted
DeepCCS 1.0 (2019)
[M+Na]+184.354581
predicted
DarkChem Lite v0.1.0
[M+Na]+177.22783
predicted
DeepCCS 1.0 (2019)

Enzymes

Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981)
Specific Function
1,8-cineole 2-exo-monooxygenase activity
Gene Name
CYP3A4
Uniprot ID
P08684
Uniprot Name
Cytochrome P450 3A4
Molecular Weight
57342.67 Da
References
  1. Jones DR, Kim SY, Boysen G, Yun CH, Miller GP: Contribution of three CYP3A isoforms to metabolism of R- and S-warfarin. Drug Metab Lett. 2010 Dec;4(4):213-9. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Primarily catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) with a preference for the last double bond (PubMed:15766564, PubMed:19965576, PubMed:7574697). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes all trans-retinoic acid toward its 4-hydroxylated form (PubMed:11093772). Displays 16-alpha hydroxylase activity toward estrogen steroid hormones, 17beta-estradiol (E2) and estrone (E1) (PubMed:14559847). Plays a role in the oxidative metabolism of xenobiotics. It is the principal enzyme responsible for the metabolism of the anti-cancer drug paclitaxel (taxol) (PubMed:26427316)
Specific Function
arachidonic acid epoxygenase activity
Gene Name
CYP2C8
Uniprot ID
P10632
Uniprot Name
Cytochrome P450 2C8
Molecular Weight
55824.275 Da
References
  1. Kaminsky LS, Zhang ZY: Human P450 metabolism of warfarin. Pharmacol Ther. 1997;73(1):67-74. doi: 10.1016/s0163-7258(96)00140-4. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids and steroids (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:15766564, PubMed:19965576, PubMed:7574697, PubMed:9866708). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Exhibits low catalytic activity for the formation of catechol estrogens from 17beta-estradiol (E2) and estrone (E1), namely 2-hydroxy E1 and E2 (PubMed:12865317). Catalyzes bisallylic hydroxylation and hydroxylation with double-bond migration of polyunsaturated fatty acids (PUFA) (PubMed:9435160, PubMed:9866708). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan (PubMed:25994031)
Specific Function
(R)-limonene 6-monooxygenase activity
Gene Name
CYP2C9
Uniprot ID
P11712
Uniprot Name
Cytochrome P450 2C9
Molecular Weight
55627.365 Da
References
  1. Kaminsky LS, Zhang ZY: Human P450 metabolism of warfarin. Pharmacol Ther. 1997;73(1):67-74. doi: 10.1016/s0163-7258(96)00140-4. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in retinoid metabolism. Hydroxylates all trans-retinoic acid (atRA) to 4-hydroxyretinoate and may modulate atRA signaling and clearance. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH-ferrihemoprotein reductase)
Specific Function
arachidonic acid epoxygenase activity
Gene Name
CYP2C18
Uniprot ID
P33260
Uniprot Name
Cytochrome P450 2C18
Molecular Weight
55710.075 Da
References
  1. Kaminsky LS, Zhang ZY: Human P450 metabolism of warfarin. Pharmacol Ther. 1997;73(1):67-74. doi: 10.1016/s0163-7258(96)00140-4. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in the metabolism of polyunsaturated fatty acids (PUFA) (PubMed:18577768, PubMed:19965576, PubMed:20972997). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18577768, PubMed:19965576, PubMed:20972997). Catalyzes the hydroxylation of carbon-hydrogen bonds. Hydroxylates PUFA specifically at the omega-1 position (PubMed:18577768). Catalyzes the epoxidation of double bonds of PUFA (PubMed:19965576, PubMed:20972997). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine. Hydroxylates fenbendazole at the 4' position (PubMed:23959307)
Specific Function
(R)-limonene 6-monooxygenase activity
Gene Name
CYP2C19
Uniprot ID
P33261
Uniprot Name
Cytochrome P450 2C19
Molecular Weight
55944.565 Da
References
  1. Kim SY, Kang JY, Hartman JH, Park SH, Jones DR, Yun CH, Boysen G, Miller GP: Metabolism of R- and S-warfarin by CYP2C19 into four hydroxywarfarins. Drug Metab Lett. 2012 Sep 1;6(3):157-64. [Article]

Drug created at June 12, 2018 19:35 / Updated at November 06, 2020 02:39