Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4'-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen.

Article Details

Citation

Crewe HK, Notley LM, Wunsch RM, Lennard MS, Gillam EM

Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4'-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen.

Drug Metab Dispos. 2002 Aug;30(8):869-74.

PubMed ID
12124303 [ View in PubMed
]
Abstract

The cytochrome P450 (P450)-mediated biotransformation of tamoxifen is important in determining both the clearance of the drug and its conversion to the active metabolite, trans-4-hydroxytamoxifen. Biotransformation by P450 forms expressed extrahepatically, such as in the breast and endometrium, may be particularly important in determining tissue-specific effects of tamoxifen. Moreover, tamoxifen may serve as a useful probe drug to examine the regioselectivity of different forms. Tamoxifen metabolism was investigated in vitro using recombinant human P450s. Forms CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7 were coexpressed in Escherichia coli with recombinant human NADPH-cytochrome P450 reductase. Bacterial membranes were harvested and incubated with tamoxifen or trans-4-hydroxytamoxifen under conditions supporting P450-mediated catalysis. CYP2D6 was the major catalyst of 4-hydroxylation at low tamoxifen concentrations (170 +/- 20 pmol/40 min/0.2 nmol P450 using 18 microM tamoxifen), but CYP2B6 showed significant activity at high substrate concentrations (28.1 +/- 0.8 and 3.1 +/- 0.5 nmol/120 min/0.2 nmol P450 for CYP2D6 and CYP2B6, respectively, using 250 microM tamoxifen). These two forms also catalyzed 4'-hydroxylation (13.0 +/- 1.9 and 1.4 +/- 0.1 nmol/120 min/0.2 nmol P450, respectively, for CYP2B6 and CYP2D6 at 250 microM tamoxifen; 0.51 +/- 0.08 pmol/40 min/0.2 nmol P450 for CYP2B6 at 18 microM tamoxifen). Tamoxifen N-demethylation was mediated by CYP2D6, 1A1, 1A2, and 3A4, at low substrate concentrations, with contributions by CYP1B1, 2C9, 2C19 and 3A5 at high concentrations. CYP1B1 was the principal catalyst of 4-hydroxytamoxifen trans-cis isomerization but CYP2B6 and CYP2C19 also contributed.

DrugBank Data that Cites this Article

Drugs
Drug Enzymes
DrugEnzymeKindOrganismPharmacological ActionActions
TamoxifenCytochrome P450 1A1ProteinHumans
Unknown
Substrate
Details
TamoxifenCytochrome P450 1A2ProteinHumans
Unknown
Substrate
Details
TamoxifenCytochrome P450 1B1ProteinHumans
Unknown
Substrate
Inhibitor
Details
TamoxifenCytochrome P450 2B6ProteinHumans
Unknown
Substrate
Inhibitor
Details
TamoxifenCytochrome P450 2C19ProteinHumans
Unknown
Substrate
Details
TamoxifenCytochrome P450 2D6ProteinHumans
Unknown
Substrate
Inhibitor
Details
Drug Reactions
Reaction
Details
Details