Avasimibe

This drug entry is a stub and has not been fully annotated. It is scheduled to be annotated soon.

Identification

Generic Name
Avasimibe
DrugBank Accession Number
DB06442
Background

Not Available

Type
Small Molecule
Groups
Investigational
Structure
Weight
Average: 501.73
Monoisotopic: 501.291280043
Chemical Formula
C29H43NO4S
Synonyms
  • Avasimibe
External IDs
  • CI-1011

Pharmacology

Indication

Investigated for use/treatment in peripheral vascular disease.

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Not Available

Mechanism of action
TargetActionsOrganism
ALiver carboxylesterase 1
inhibitor
Humans
Absorption

Not Available

Volume of distribution

Not Available

Protein binding

Not Available

Metabolism
Not Available
Route of elimination

Not Available

Half-life

Not Available

Clearance

Not Available

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

Not Available

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
AbemaciclibThe metabolism of Abemaciclib can be increased when combined with Avasimibe.
AbrocitinibThe metabolism of Abrocitinib can be decreased when combined with Avasimibe.
AcalabrutinibThe metabolism of Acalabrutinib can be increased when combined with Avasimibe.
AcenocoumarolThe metabolism of Acenocoumarol can be increased when combined with Avasimibe.
AcetaminophenThe metabolism of Acetaminophen can be decreased when combined with Avasimibe.
Food Interactions
Not Available

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
Product Ingredients
IngredientUNIICASInChI Key
Avasimibe Sodium32035QP3VQ166518-61-2LENDCHCWVCXELL-UHFFFAOYSA-M

Categories

Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as aromatic monoterpenoids. These are monoterpenoids containing at least one aromatic ring.
Kingdom
Organic compounds
Super Class
Lipids and lipid-like molecules
Class
Prenol lipids
Sub Class
Monoterpenoids
Direct Parent
Aromatic monoterpenoids
Alternative Parents
Phenylacetamides / Monocyclic monoterpenoids / Phenylpropanes / Cumenes / Phenoxy compounds / Organic sulfuric acids and derivatives / Carboxylic acids and derivatives / Organopnictogen compounds / Organonitrogen compounds / Organic oxides
show 2 more
Substituents
Aromatic homomonocyclic compound / Aromatic monoterpenoid / Benzenoid / Carbonyl group / Carboxylic acid derivative / Cumene / Hydrocarbon derivative / Monocyclic benzene moiety / Monocyclic monoterpenoid / Organic nitrogen compound
show 10 more
Molecular Framework
Aromatic homomonocyclic compounds
External Descriptors
Not Available
Affected organisms
  • Humans and other mammals

Chemical Identifiers

UNII
28LQ20T5RC
CAS number
166518-60-1
InChI Key
PTQXTEKSNBVPQJ-UHFFFAOYSA-N
InChI
InChI=1S/C29H43NO4S/c1-17(2)22-14-25(20(7)8)27(26(15-22)21(9)10)16-28(31)30-35(32,33)34-29-23(18(3)4)12-11-13-24(29)19(5)6/h11-15,17-21H,16H2,1-10H3,(H,30,31)
IUPAC Name
1-({[2,6-bis(propan-2-yl)phenoxy]sulfonyl}amino)-2-[2,4,6-tris(propan-2-yl)phenyl]ethan-1-one
SMILES
CC(C)C1=CC(C(C)C)=C(CC(=O)NS(=O)(=O)OC2=C(C=CC=C2C(C)C)C(C)C)C(=C1)C(C)C

References

General References
  1. Sahi J, Stern RH, Milad MA, Rose KA, Gibson G, Zheng X, Stilgenbauer L, Sadagopan N, Jolley S, Gilbert D, LeCluyse EL: Effects of avasimibe on cytochrome P450 2C9 expression in vitro and in vivo. Drug Metab Dispos. 2004 Dec;32(12):1370-6. Epub 2004 Aug 27. [Article]
ChemSpider
145759
BindingDB
50069900
ChEMBL
CHEMBL101309
ZINC
ZINC000001540245

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage Forms
Not Available
Prices
Not Available
Patents
Not Available

Properties

State
Solid
Experimental Properties
Not Available
Predicted Properties
PropertyValueSource
Water Solubility1.63e-05 mg/mLALOGPS
logP5.98ALOGPS
logP8.67Chemaxon
logS-7.5ALOGPS
pKa (Strongest Acidic)2.9Chemaxon
pKa (Strongest Basic)-6Chemaxon
Physiological Charge-1Chemaxon
Hydrogen Acceptor Count4Chemaxon
Hydrogen Donor Count1Chemaxon
Polar Surface Area72.47 Å2Chemaxon
Rotatable Bond Count9Chemaxon
Refractivity144.81 m3·mol-1Chemaxon
Polarizability57.13 Å3Chemaxon
Number of Rings2Chemaxon
Bioavailability0Chemaxon
Rule of FiveNoChemaxon
Ghose FilterNoChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleNoChemaxon
Predicted ADMET Features
Not Available

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-0ik9-0152890000-86184d27171a74b8ab74
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-0udi-0030090000-a9dfefb51a029ce58a33
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-0udi-0276190000-0625dba2172b35f0aceb
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-0o90-0942610000-c4caf1233432c37e98dc
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-001i-1250910000-b7ab739475d3ef700b4a
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-0gb9-0920200000-2e9a4ef3778f7867d022
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-246.4533709
predicted
DarkChem Lite v0.1.0
[M-H]-213.62914
predicted
DeepCCS 1.0 (2019)
[M+H]+246.5461709
predicted
DarkChem Lite v0.1.0
[M+H]+216.0247
predicted
DeepCCS 1.0 (2019)
[M+Na]+246.8322709
predicted
DarkChem Lite v0.1.0
[M+Na]+221.93721
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs (PubMed:18762277, PubMed:7980644, PubMed:9169443, PubMed:9490062). Hydrolyzes aromatic and aliphatic esters, but has no catalytic activity toward amides or a fatty acyl-CoA ester (PubMed:18762277, PubMed:7980644, PubMed:9169443, PubMed:9490062). Hydrolyzes the methyl ester group of cocaine to form benzoylecgonine (PubMed:7980644). Catalyzes the transesterification of cocaine to form cocaethylene (PubMed:7980644). Displays fatty acid ethyl ester synthase activity, catalyzing the ethyl esterification of oleic acid to ethyloleate (PubMed:7980644). Converts monoacylglycerides to free fatty acids and glycerol. Hydrolyzes of 2-arachidonoylglycerol and prostaglandins (PubMed:21049984). Hydrolyzes cellular cholesteryl esters to free cholesterols and promotes reverse cholesterol transport (RCT) by facilitating both the initial and final steps in the process (PubMed:11015575, PubMed:16024911, PubMed:16971496, PubMed:18762277). First of all, allows free cholesterol efflux from macrophages to extracellular cholesterol acceptors and secondly, releases free cholesterol from lipoprotein-delivered cholesteryl esters in the liver for bile acid synthesis or direct secretion into the bile (PubMed:16971496, PubMed:18599737, PubMed:18762277)
Specific Function
carboxylesterase activity
Gene Name
CES1
Uniprot ID
P23141
Uniprot Name
Liver carboxylesterase 1
Molecular Weight
62520.62 Da
References
  1. Delsing DJ, Offerman EH, van Duyvenvoorde W, van Der Boom H, de Wit EC, Gijbels MJ, van Der Laarse A, Jukema JW, Havekes LM, Princen HM: Acyl-CoA:cholesterol acyltransferase inhibitor avasimibe reduces atherosclerosis in addition to its cholesterol-lowering effect in ApoE*3-Leiden mice. Circulation. 2001 Apr 3;103(13):1778-86. [Article]
  2. Sudhop T, von Bergmann K: Cholesterol absorption inhibitors for the treatment of hypercholesterolaemia. Drugs. 2002;62(16):2333-47. [Article]
  3. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]

Enzymes

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inducer
General Function
A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981)
Specific Function
1,8-cineole 2-exo-monooxygenase activity
Gene Name
CYP3A4
Uniprot ID
P08684
Uniprot Name
Cytochrome P450 3A4
Molecular Weight
57342.67 Da
References
  1. Sahi J, Milad MA, Zheng X, Rose KA, Wang H, Stilgenbauer L, Gilbert D, Jolley S, Stern RH, LeCluyse EL: Avasimibe induces CYP3A4 and multiple drug resistance protein 1 gene expression through activation of the pregnane X receptor. J Pharmacol Exp Ther. 2003 Sep;306(3):1027-34. Epub 2003 May 23. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
Curator comments
There are limited data supporting this enzyme action in the literature.
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids and steroids (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:15766564, PubMed:19965576, PubMed:7574697, PubMed:9866708). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Exhibits low catalytic activity for the formation of catechol estrogens from 17beta-estradiol (E2) and estrone (E1), namely 2-hydroxy E1 and E2 (PubMed:12865317). Catalyzes bisallylic hydroxylation and hydroxylation with double-bond migration of polyunsaturated fatty acids (PUFA) (PubMed:9435160, PubMed:9866708). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan (PubMed:25994031)
Specific Function
(R)-limonene 6-monooxygenase activity
Gene Name
CYP2C9
Uniprot ID
P11712
Uniprot Name
Cytochrome P450 2C9
Molecular Weight
55627.365 Da
References
  1. Sahi J, Stern RH, Milad MA, Rose KA, Gibson G, Zheng X, Stilgenbauer L, Sadagopan N, Jolley S, Gilbert D, LeCluyse EL: Effects of avasimibe on cytochrome P450 2C9 expression in vitro and in vivo. Drug Metab Dispos. 2004 Dec;32(12):1370-6. Epub 2004 Aug 27. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:19965576, PubMed:9435160). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:19965576, PubMed:9435160). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:11555828, PubMed:12865317). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2 (PubMed:11555828, PubMed:12865317). Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). May act as a major enzyme for all-trans retinoic acid biosynthesis in the liver. Catalyzes two successive oxidative transformation of all-trans retinol to all-trans retinal and then to the active form all-trans retinoic acid (PubMed:10681376). Primarily catalyzes stereoselective epoxidation of the last double bond of polyunsaturated fatty acids (PUFA), displaying a strong preference for the (R,S) stereoisomer (PubMed:19965576). Catalyzes bisallylic hydroxylation and omega-1 hydroxylation of PUFA (PubMed:9435160). May also participate in eicosanoids metabolism by converting hydroperoxide species into oxo metabolites (lipoxygenase-like reaction, NADPH-independent) (PubMed:21068195). Plays a role in the oxidative metabolism of xenobiotics. Catalyzes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin (PubMed:14725854). Metabolizes caffeine via N3-demethylation (Probable)
Specific Function
aromatase activity
Gene Name
CYP1A2
Uniprot ID
P05177
Uniprot Name
Cytochrome P450 1A2
Molecular Weight
58406.915 Da
References
  1. Sahi J, Stern RH, Milad MA, Rose KA, Gibson G, Zheng X, Stilgenbauer L, Sadagopan N, Jolley S, Gilbert D, LeCluyse EL: Effects of avasimibe on cytochrome P450 2C9 expression in vitro and in vivo. Drug Metab Dispos. 2004 Dec;32(12):1370-6. Epub 2004 Aug 27. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of polyunsaturated fatty acids (PUFA) (PubMed:18577768, PubMed:19965576, PubMed:20972997). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18577768, PubMed:19965576, PubMed:20972997). Catalyzes the hydroxylation of carbon-hydrogen bonds. Hydroxylates PUFA specifically at the omega-1 position (PubMed:18577768). Catalyzes the epoxidation of double bonds of PUFA (PubMed:19965576, PubMed:20972997). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine. Hydroxylates fenbendazole at the 4' position (PubMed:23959307)
Specific Function
(R)-limonene 6-monooxygenase activity
Gene Name
CYP2C19
Uniprot ID
P33261
Uniprot Name
Cytochrome P450 2C19
Molecular Weight
55944.565 Da
References
  1. Sahi J, Stern RH, Milad MA, Rose KA, Gibson G, Zheng X, Stilgenbauer L, Sadagopan N, Jolley S, Gilbert D, LeCluyse EL: Effects of avasimibe on cytochrome P450 2C9 expression in vitro and in vivo. Drug Metab Dispos. 2004 Dec;32(12):1370-6. Epub 2004 Aug 27. [Article]

Drug created at March 19, 2008 16:33 / Updated at August 26, 2024 19:22