Copanlisib

Identification

Summary

Copanlisib is a PI3K inhibitor used to treat relapsed follicular lymphoma in adults.

Brand Names
Aliqopa
Generic Name
Copanlisib
DrugBank Accession Number
DB12483
Background

Copanlisib is a selective pan-Class I phosphoinositide 3-kinase (PI3K) inhibitor with preferential activity against the alpha and delta isoforms. PI3K, a lipid kinase that activates downstream signalling pathways involved in cell survival and growth, that exists in different isoforms and is often overexpressed in hematological malignancies.2 Copanlisib was granted accelerated approval by the FDA in September 2017 for the treatment of follicular lymphoma.1

Type
Small Molecule
Groups
Approved, Investigational
Structure
Weight
Average: 480.529
Monoisotopic: 480.223351414
Chemical Formula
C23H28N8O4
Synonyms
  • 2-AMINO-N-(7-METHOXY-8-(3-(MORPHOLIN-4-YL)PROPOXY)-2,3-DIHYDROIMIDAZO(1,2-C)QUINAZOLIN-5-YL(PYRIMIDINE-5-CARBOXAMIDE
  • 2-AMINO-N-(7-METHOXY-8-(3-MORPHOLIN-4-YLPROPOXY)-2,3-DIHYDROIMIDAZO(1,2-C)QUINAZOLIN-5-YL)PYRIMIDINE-5-CARBOXAMIDE
  • 5-PYRIMIDINECARBOXAMIDE, 2-AMINO-N-(2,3-DIHYDRO-7-METHOXY-8-(3-(4-MORPHOLINYL)PROPOXY)IMIDAZO(1,2-C)QUINAZOLIN-5-YL)-
  • Copanlisib
External IDs
  • BAY 80-6946
  • BAY-80-6946
  • BAY80-6946

Pharmacology

Indication

Copanlisib is indicated for the treatment of adults with relapsed follicular lymphoma (FL) who have received at least two prior systemic therapies. This indication was granted under accelerated approval; thus, continued approval may be contingent upon verification and description of clinical benefit in a confirmatory trial.5

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Associated Conditions
Indication TypeIndicationCombined Product DetailsApproval LevelAge GroupPatient CharacteristicsDose Form
Treatment ofRelapsed follicular lymphoma••••••••••••••••••• ••••• ••• ••••• •••••••• •••••••••
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Copanlisib is a kinase inhibitor with anti-tumour and pro-apoptotic activity in various tumour cell lines and xenograft models. Copanlisib causes an elevation in plasma glucose levels.5

Mechanism of action

Phosphatidylinositol-3-kinase (PI3K) signalling pathway is implicated in cell proliferation and survival, as well as resistance to chemotherapeutic agents. PI3K isoforms are often overexpressed in B-cell malignancies, including follicular lymphoma.2 Copanlisib is a class I PI3K inhibitor with preferential activity against PI3K-α and PI3K-δ isoforms expressed in malignant B cells. It binds with IC50 values of 0.5, 3.7, 6.4, and 0.7 nmol/L against class I PI3K-α, β, γ, and δ isoforms, respectively.1 Copanlisibinduces tumour cell death by apoptosis, blocks cell cycle progression, and inhibits the proliferation of primary malignant B cell lines. Copanlisib inhibits several key cell signalling pathways, including B-cell receptor (BCR) signalling, CXCR12-mediated chemotaxis of malignant B cells, and NFκB signalling in lymphoma cell lines.1,5

TargetActionsOrganism
APhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform
inhibitor
Humans
APhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoform
inhibitor
Humans
UPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform
inhibitor
Humans
UPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform
inhibitor
Humans
Absorption

The area under the plasma concentration-time curve (AUC) and maximum plasma concentration (Cmax) of copanlisib increase dose-proportionally over 5 to 93 mg (0.08 to 1.55 times the approved recommended dose) absolute dose range and exhibit linear pharmacokinetics (PK). There is no time-dependency and no accumulation in the pharmacokinetics of copanlisib. The geometric mean (range) steady state copanlisib exposure at 0.8 mg/kg (approximately the approved recommended dose of 60 mg) are 463 (range: 105 to 1670; SD: 584) ng/mL for Cmax and 1570 (range: 536 to 3410; SD: 338) ng x hr/mL for AUC0-25h.5

Volume of distribution

The geometric mean volume of distribution is 871 (range: 423 to 2150; SD: 479) L.5

Protein binding

Copanlisib is 84.2% bound to plasma proteins, mainly to serum albumin. The in vitro mean blood-to-plasma ratio is 1.7, with a range from 1.5 to 2.1.5

Metabolism

Copanlisib is primarily metabolized by CYP3A (>90%) and to a lesser extent, CYP1A1 (<10%).3,5 The M1 metabolite accounts for 5% of total radioactivity in plasma and has a pharmacological activity that is comparable to that of the parent compound.3,5

Hover over products below to view reaction partners

Route of elimination

In humans, approximately half of copanlisib is excreted as unchanged parent compound and the other half is excreted as metabolites. Following a single intravenous dose of 12 mg (0.2 times the recommended approved dose) radiolabeled copanlisib, approximately 64% of the administered dose was recovered in feces and 22% in urine within 20 to 34 days. Unchanged copanlisib represented approximately 30% of the administered dose in feces and 15% in urine. Metabolites resulting from CYP450-mediated oxidation accounted for 41% of the administered dose.5

Half-life

The geometric mean terminal elimination half-life of copanlisib is 39.1 (range: 14.6 to 82.4; SD: 15.0) hours.5

Clearance

The geometric mean clearance is 17.9 (range: 7.3 to 51.4; SD: 8.5) L/hr.5

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

The LD50 of copanlisib dihydrochloride in male and female rats after a single intravenous dose administration was >23.0 mg/kg, which corresponds to 20.0 mg/kg copanlisib.6 There is no information on copanlisib overdose.

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
AbametapirThe serum concentration of Copanlisib can be increased when it is combined with Abametapir.
AbataceptThe metabolism of Copanlisib can be increased when combined with Abatacept.
AbemaciclibAbemaciclib may decrease the excretion rate of Copanlisib which could result in a higher serum level.
AcalabrutinibThe metabolism of Copanlisib can be decreased when combined with Acalabrutinib.
AcetaminophenThe metabolism of Copanlisib can be increased when combined with Acetaminophen.
Food Interactions
  • Avoid grapefruit products. Grapefruit strongly inhibits CYP3A metabolism, which may increase the serum concentration of copanlisib.
  • Avoid St. John's Wort. This herb strongly induces the CYP3A metabolism of copanlisib and may reduce its serum concentration.

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
Product Ingredients
IngredientUNIICASInChI Key
Copanlisib dihydrochloride03ZI7RZ52O1402152-13-9STGQPVQAAFJJFX-UHFFFAOYSA-N
Copanlisib dihydrochloride hydrateW421JK3CPA1402152-46-8PRZNRMHJLYLVBJ-UHFFFAOYSA-N
Brand Name Prescription Products
NameDosageStrengthRouteLabellerMarketing StartMarketing EndRegionImage
AliqopaInjection, powder, lyophilized, for solution15 mg/1mLIntravenousBayer HealthCare Pharmaceuticals Inc.2017-09-14Not applicableUS flag

Categories

ATC Codes
L01EM02 — Copanlisib
Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as quinazolinamines. These are heterocyclic aromatic compounds containing a quianazoline moiety substituted by one or more amine groups.
Kingdom
Organic compounds
Super Class
Organoheterocyclic compounds
Class
Diazanaphthalenes
Sub Class
Benzodiazines
Direct Parent
Quinazolinamines
Alternative Parents
Pyrimidinecarboxamides / Anisoles / Alkyl aryl ethers / Aminopyrimidines and derivatives / Morpholines / Imidolactams / Imidazolines / Heteroaromatic compounds / Trialkylamines / Amino acids and derivatives
show 10 more
Substituents
2-imidazoline / Alkyl aryl ether / Amidine / Amine / Amino acid or derivatives / Aminopyrimidine / Anisole / Aromatic heteropolycyclic compound / Azacycle / Benzenoid
show 27 more
Molecular Framework
Aromatic heteropolycyclic compounds
External Descriptors
Not Available
Affected organisms
Not Available

Chemical Identifiers

UNII
WI6V529FZ9
CAS number
1032568-63-0
InChI Key
PZBCKZWLPGJMAO-UHFFFAOYSA-N
InChI
InChI=1S/C23H28N8O4/c1-33-19-17(35-10-2-6-30-8-11-34-12-9-30)4-3-16-18(19)28-23(31-7-5-25-20(16)31)29-21(32)15-13-26-22(24)27-14-15/h3-4,13-14H,2,5-12H2,1H3,(H2,24,26,27)(H,28,29,32)
IUPAC Name
2-amino-N-{7-methoxy-8-[3-(morpholin-4-yl)propoxy]-2H,3H-imidazo[1,2-c]quinazolin-5-yl}pyrimidine-5-carboxamide
SMILES
COC1=C(OCCCN2CCOCC2)C=CC2=C1N=C(NC(=O)C1=CN=C(N)N=C1)N1CCN=C21

References

General References
  1. Markham A: Copanlisib: First Global Approval. Drugs. 2017 Dec;77(18):2057-2062. doi: 10.1007/s40265-017-0838-6. [Article]
  2. Mensah FA, Blaize JP, Bryan LJ: Spotlight on copanlisib and its potential in the treatment of relapsed/refractory follicular lymphoma: evidence to date. Onco Targets Ther. 2018 Aug 13;11:4817-4827. doi: 10.2147/OTT.S142264. eCollection 2018. [Article]
  3. Gerisch M, Schwarz T, Lang D, Rohde G, Reif S, Genvresse I, Reschke S, van der Mey D, Granvil C: Pharmacokinetics of intravenous pan-class I phosphatidylinositol 3-kinase (PI3K) inhibitor [(14)C]copanlisib (BAY 80-6946) in a mass balance study in healthy male volunteers. Cancer Chemother Pharmacol. 2017 Sep;80(3):535-544. doi: 10.1007/s00280-017-3383-9. Epub 2017 Jul 11. [Article]
  4. FDA Press Announcements: FDA approves new treatment for adults with relapsed follicular lymphoma [Link]
  5. FDA Approved Drug Products: ALIQOPA (copanlisib) for injection, for intravenous use (September 2023) [Link]
  6. EMA: Aliqopa (copanlisib) withdrawal assessment report [Link]
PubChem Compound
24989044
PubChem Substance
347828721
ChemSpider
25069683
BindingDB
50204093
RxNav
1945077
ChEBI
173077
ChEMBL
CHEMBL3218576
ZINC
ZINC000068247389
PDBe Ligand
6E2
Wikipedia
Copanlisib
PDB Entries
5g2n

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns
Not AvailableActive Not RecruitingNot AvailableRelapsed or Refractory Indolent Non-Hodgkin Lymphoma1somestatusstop reasonjust information to hide
Not AvailableNo Longer AvailableNot AvailableCancer1somestatusstop reasonjust information to hide
3Active Not RecruitingTreatmentNon-Hodgkin's Lymphoma (NHL)1somestatusstop reasonjust information to hide
3CompletedTreatmentNon-Hodgkin's Lymphoma (NHL)1somestatusstop reasonjust information to hide
3TerminatedTreatmentNon-Hodgkin's Lymphoma (NHL)1somestatusstop reasonjust information to hide

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage Forms
FormRouteStrength
Injection, powder, lyophilized, for solutionIntravenous15 mg/1mL
Prices
Not Available
Patents
Patent NumberPediatric ExtensionApprovedExpires (estimated)Region
US9636344No2017-05-022032-03-29US flag
US8466283No2013-06-182029-10-22US flag
US7511041No2009-03-312024-05-13US flag
USRE46856No2018-05-222029-10-22US flag
US10383876No2019-08-202032-03-29US flag

Properties

State
Solid
Experimental Properties
Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.231 mg/mLALOGPS
logP1.02ALOGPS
logP0.32Chemaxon
logS-3.3ALOGPS
pKa (Strongest Acidic)10.15Chemaxon
pKa (Strongest Basic)6.88Chemaxon
Physiological Charge1Chemaxon
Hydrogen Acceptor Count11Chemaxon
Hydrogen Donor Count2Chemaxon
Polar Surface Area139.79 Å2Chemaxon
Rotatable Bond Count7Chemaxon
Refractivity132.78 m3·mol-1Chemaxon
Polarizability51.71 Å3Chemaxon
Number of Rings5Chemaxon
Bioavailability1Chemaxon
Rule of FiveNoChemaxon
Ghose FilterNoChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleYesChemaxon
Predicted ADMET Features
Not Available

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-001i-0300900000-bae1d15bd596281ff7ba
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-056r-0007900000-857ba35577042f590c14
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-004i-0104900000-7f9b89d528c93d2331a8
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-001i-0401900000-2ae9b9abb943a2260cee
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-0uei-2503900000-97de1a0645cb64d04cd7
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-052r-2319300000-780a15f71bde0cb1ed99
Predicted 1H NMR Spectrum1D NMRNot Applicable
Predicted 13C NMR Spectrum1D NMRNot Applicable
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-232.6020052
predicted
DarkChem Lite v0.1.0
[M-H]-204.10176
predicted
DeepCCS 1.0 (2019)
[M+H]+232.0984052
predicted
DarkChem Lite v0.1.0
[M+H]+206.45975
predicted
DeepCCS 1.0 (2019)
[M+Na]+233.6617052
predicted
DarkChem Lite v0.1.0
[M+Na]+212.5529
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Phosphoinositide-3-kinase (PI3K) phosphorylates phosphatidylinositol (PI) and its phosphorylated derivatives at position 3 of the inositol ring to produce 3-phosphoinositides (PubMed:15135396, PubMed:23936502, PubMed:28676499). Uses ATP and PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3) (PubMed:15135396, PubMed:28676499). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Participates in cellular signaling in response to various growth factors. Involved in the activation of AKT1 upon stimulation by receptor tyrosine kinases ligands such as EGF, insulin, IGF1, VEGFA and PDGF. Involved in signaling via insulin-receptor substrate (IRS) proteins. Essential in endothelial cell migration during vascular development through VEGFA signaling, possibly by regulating RhoA activity. Required for lymphatic vasculature development, possibly by binding to RAS and by activation by EGF and FGF2, but not by PDGF. Regulates invadopodia formation through the PDPK1-AKT1 pathway. Participates in cardiomyogenesis in embryonic stem cells through a AKT1 pathway. Participates in vasculogenesis in embryonic stem cells through PDK1 and protein kinase C pathway. In addition to its lipid kinase activity, it displays a serine-protein kinase activity that results in the autophosphorylation of the p85alpha regulatory subunit as well as phosphorylation of other proteins such as 4EBP1, H-Ras, the IL-3 beta c receptor and possibly others (PubMed:23936502, PubMed:28676499). Plays a role in the positive regulation of phagocytosis and pinocytosis (By similarity)
Specific Function
1-phosphatidylinositol-3-kinase activity
Gene Name
PIK3CA
Uniprot ID
P42336
Uniprot Name
Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform
Molecular Weight
124283.025 Da
References
  1. Mensah FA, Blaize JP, Bryan LJ: Spotlight on copanlisib and its potential in the treatment of relapsed/refractory follicular lymphoma: evidence to date. Onco Targets Ther. 2018 Aug 13;11:4817-4827. doi: 10.2147/OTT.S142264. eCollection 2018. [Article]
  2. Markham A: Copanlisib: First Global Approval. Drugs. 2017 Dec;77(18):2057-2062. doi: 10.1007/s40265-017-0838-6. [Article]
  3. FDA Approved Drug Products: ALIQOPA (copanlisib) for injection, for intravenous use (September 2023) [Link]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Phosphoinositide-3-kinase (PI3K) phosphorylates phosphatidylinositol (PI) and its phosphorylated derivatives at position 3 of the inositol ring to produce 3-phosphoinositides (PubMed:9235916). Uses ATP and PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3) (PubMed:15135396). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Mediates immune responses. Plays a role in B-cell development, proliferation, migration, and function. Required for B-cell receptor (BCR) signaling. Mediates B-cell proliferation response to anti-IgM, anti-CD40 and IL4 stimulation. Promotes cytokine production in response to TLR4 and TLR9. Required for antibody class switch mediated by TLR9. Involved in the antigen presentation function of B-cells. Involved in B-cell chemotaxis in response to CXCL13 and sphingosine 1-phosphate (S1P). Required for proliferation, signaling and cytokine production of naive, effector and memory T-cells. Required for T-cell receptor (TCR) signaling. Mediates TCR signaling events at the immune synapse. Activation by TCR leads to antigen-dependent memory T-cell migration and retention to antigenic tissues. Together with PIK3CG participates in T-cell development. Contributes to T-helper cell expansion and differentiation. Required for T-cell migration mediated by homing receptors SELL/CD62L, CCR7 and S1PR1 and antigen dependent recruitment of T-cells. Together with PIK3CG is involved in natural killer (NK) cell development and migration towards the sites of inflammation. Participates in NK cell receptor activation. Plays a role in NK cell maturation and cytokine production. Together with PIK3CG is involved in neutrophil chemotaxis and extravasation. Together with PIK3CG participates in neutrophil respiratory burst. Plays important roles in mast-cell development and mast cell mediated allergic response. Involved in stem cell factor (SCF)-mediated proliferation, adhesion and migration. Required for allergen-IgE-induced degranulation and cytokine release. The lipid kinase activity is required for its biological function. Isoform 2 may be involved in stabilizing total RAS levels, resulting in increased ERK phosphorylation and increased PI3K activity
Specific Function
1-phosphatidylinositol-3-kinase activity
Gene Name
PIK3CD
Uniprot ID
O00329
Uniprot Name
Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoform
Molecular Weight
119478.065 Da
References
  1. Mensah FA, Blaize JP, Bryan LJ: Spotlight on copanlisib and its potential in the treatment of relapsed/refractory follicular lymphoma: evidence to date. Onco Targets Ther. 2018 Aug 13;11:4817-4827. doi: 10.2147/OTT.S142264. eCollection 2018. [Article]
  2. Markham A: Copanlisib: First Global Approval. Drugs. 2017 Dec;77(18):2057-2062. doi: 10.1007/s40265-017-0838-6. [Article]
  3. FDA Approved Drug Products: ALIQOPA (copanlisib) for injection, for intravenous use (September 2023) [Link]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Phosphoinositide-3-kinase (PI3K) phosphorylates phosphatidylinositol derivatives at position 3 of the inositol ring to produce 3-phosphoinositides (PubMed:15135396). Uses ATP and PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3) (PubMed:15135396). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Involved in the activation of AKT1 upon stimulation by G-protein coupled receptors (GPCRs) ligands such as CXCL12, sphingosine 1-phosphate, and lysophosphatidic acid. May also act downstream receptor tyrosine kinases. Required in different signaling pathways for stable platelet adhesion and aggregation. Plays a role in platelet activation signaling triggered by GPCRs, alpha-IIb/beta-3 integrins (ITGA2B/ ITGB3) and ITAM (immunoreceptor tyrosine-based activation motif)-bearing receptors such as GP6. Regulates the strength of adhesion of ITGA2B/ ITGB3 activated receptors necessary for the cellular transmission of contractile forces. Required for platelet aggregation induced by F2 (thrombin) and thromboxane A2 (TXA2). Has a role in cell survival. May have a role in cell migration. Involved in the early stage of autophagosome formation. Modulates the intracellular level of PtdIns3P (phosphatidylinositol 3-phosphate) and activates PIK3C3 kinase activity. May act as a scaffold, independently of its lipid kinase activity to positively regulate autophagy. May have a role in insulin signaling as scaffolding protein in which the lipid kinase activity is not required. May have a kinase-independent function in regulating cell proliferation and in clathrin-mediated endocytosis. Mediator of oncogenic signal in cell lines lacking PTEN. The lipid kinase activity is necessary for its role in oncogenic transformation. Required for the growth of ERBB2 and RAS driven tumors. Has also a protein kinase activity showing autophosphorylation (PubMed:12502714)
Specific Function
1-phosphatidylinositol-3-kinase activity
Gene Name
PIK3CB
Uniprot ID
P42338
Uniprot Name
Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform
Molecular Weight
122761.225 Da
References
  1. Markham A: Copanlisib: First Global Approval. Drugs. 2017 Dec;77(18):2057-2062. doi: 10.1007/s40265-017-0838-6. [Article]
  2. Mensah FA, Blaize JP, Bryan LJ: Spotlight on copanlisib and its potential in the treatment of relapsed/refractory follicular lymphoma: evidence to date. Onco Targets Ther. 2018 Aug 13;11:4817-4827. doi: 10.2147/OTT.S142264. eCollection 2018. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Links G-protein coupled receptor activation to PIP3 production. Involved in immune, inflammatory and allergic responses. Modulates leukocyte chemotaxis to inflammatory sites and in response to chemoattractant agents. May control leukocyte polarization and migration by regulating the spatial accumulation of PIP3 and by regulating the organization of F-actin formation and integrin-based adhesion at the leading edge. Controls motility of dendritic cells. Together with PIK3CD is involved in natural killer (NK) cell development and migration towards the sites of inflammation. Participates in T-lymphocyte migration. Regulates T-lymphocyte proliferation, activation, and cytokine production. Together with PIK3CD participates in T-lymphocyte development. Required for B-lymphocyte development and signaling. Together with PIK3CD participates in neutrophil respiratory burst. Together with PIK3CD is involved in neutrophil chemotaxis and extravasation. Together with PIK3CB promotes platelet aggregation and thrombosis. Regulates alpha-IIb/beta-3 integrins (ITGA2B/ ITGB3) adhesive function in platelets downstream of P2Y12 through a lipid kinase activity-independent mechanism. May have also a lipid kinase activity-dependent function in platelet aggregation. Involved in endothelial progenitor cell migration. Negative regulator of cardiac contractility. Modulates cardiac contractility by anchoring protein kinase A (PKA) and PDE3B activation, reducing cAMP levels. Regulates cardiac contractility also by promoting beta-adrenergic receptor internalization by binding to GRK2 and by non-muscle tropomyosin phosphorylation. Also has serine/threonine protein kinase activity: both lipid and protein kinase activities are required for beta-adrenergic receptor endocytosis. May also have a scaffolding role in modulating cardiac contractility. Contributes to cardiac hypertrophy under pathological stress. Through simultaneous binding of PDE3B to RAPGEF3 and PIK3R6 is assembled in a signaling complex in which the PI3K gamma complex is activated by RAPGEF3 and which is involved in angiogenesis. In neutrophils, participates in a phospholipase C-activating N-formyl peptide-activated GPCR (G protein-coupled receptor) signaling pathway downstream of RASGRP4-mediated Ras-activation, to promote neutrophil functional responses (By similarity)
Specific Function
1-phosphatidylinositol-3-kinase activity
Gene Name
PIK3CG
Uniprot ID
P48736
Uniprot Name
Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform
Molecular Weight
126452.625 Da
References
  1. Markham A: Copanlisib: First Global Approval. Drugs. 2017 Dec;77(18):2057-2062. doi: 10.1007/s40265-017-0838-6. [Article]
  2. Mensah FA, Blaize JP, Bryan LJ: Spotlight on copanlisib and its potential in the treatment of relapsed/refractory follicular lymphoma: evidence to date. Onco Targets Ther. 2018 Aug 13;11:4817-4827. doi: 10.2147/OTT.S142264. eCollection 2018. [Article]

Enzymes

Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981)
Specific Function
1,8-cineole 2-exo-monooxygenase activity
Gene Name
CYP3A4
Uniprot ID
P08684
Uniprot Name
Cytochrome P450 3A4
Molecular Weight
57342.67 Da
References
  1. FDA Approved Drug Products: ALIQOPA (copanlisib) for injection, for intravenous use (September 2023) [Link]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in the metabolism of steroid hormones and vitamins (PubMed:10681376, PubMed:11093772, PubMed:12865317, PubMed:2732228). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:10681376, PubMed:11093772, PubMed:12865317, PubMed:2732228). Exhibits high catalytic activity for the formation of catechol estrogens from 17beta-estradiol (E2) and estrone (E1), namely 2-hydroxy E1 and E2 (PubMed:12865317). Catalyzes 6beta-hydroxylation of the steroid hormones testosterone, progesterone, and androstenedione (PubMed:2732228). Catalyzes the oxidative conversion of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes all trans-retinoic acid (atRA) to 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Also involved in the oxidative metabolism of xenobiotics, including calcium channel blocking drug nifedipine and immunosuppressive drug cyclosporine (PubMed:2732228)
Specific Function
aromatase activity
Gene Name
CYP3A5
Uniprot ID
P20815
Uniprot Name
Cytochrome P450 3A5
Molecular Weight
57108.065 Da
References
  1. FDA Approved Drug Products: ALIQOPA (copanlisib) for injection, for intravenous use (September 2023) [Link]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in the metabolism of steroid hormones and vitamins during embryogenesis (PubMed:11093772, PubMed:12865317, PubMed:14559847, PubMed:17178770, PubMed:9555064). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:11093772, PubMed:12865317, PubMed:14559847, PubMed:17178770, PubMed:9555064). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes 3beta-hydroxyandrost-5-en-17-one (dehydroepiandrosterone, DHEA), a precursor in the biosynthesis of androgen and estrogen steroid hormones (PubMed:17178770, PubMed:9555064). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1), particularly D-ring hydroxylated estrone at the C16-alpha position (PubMed:12865317, PubMed:14559847). Mainly hydroxylates all trans-retinoic acid (atRA) to 4-hydroxyretinoate and may play a role in atRA clearance during fetal development (PubMed:11093772). Also involved in the oxidative metabolism of xenobiotics including anticonvulsants (PubMed:9555064)
Specific Function
all-trans retinoic acid 18-hydroxylase activity
Gene Name
CYP3A7
Uniprot ID
P24462
Uniprot Name
Cytochrome P450 3A7
Molecular Weight
57469.95 Da
References
  1. FDA Approved Drug Products: ALIQOPA (copanlisib) for injection, for intravenous use (September 2023) [Link]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15041462, PubMed:15805301, PubMed:18577768, PubMed:19965576, PubMed:20972997). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15041462, PubMed:15805301, PubMed:18577768, PubMed:19965576, PubMed:20972997). Catalyzes the hydroxylation of carbon-hydrogen bonds. Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C15-alpha and C16-alpha positions (PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15805301). Displays different regioselectivities for polyunsaturated fatty acids (PUFA) hydroxylation (PubMed:15041462, PubMed:18577768). Catalyzes the epoxidation of double bonds of certain PUFA (PubMed:15041462, PubMed:19965576, PubMed:20972997). Converts arachidonic acid toward epoxyeicosatrienoic acid (EET) regioisomers, 8,9-, 11,12-, and 14,15-EET, that function as lipid mediators in the vascular system (PubMed:20972997). Displays an absolute stereoselectivity in the epoxidation of eicosapentaenoic acid (EPA) producing the 17(R),18(S) enantiomer (PubMed:15041462). May play an important role in all-trans retinoic acid biosynthesis in extrahepatic tissues. Catalyzes two successive oxidative transformation of all-trans retinol to all-trans retinal and then to the active form all-trans retinoic acid (PubMed:10681376). May also participate in eicosanoids metabolism by converting hydroperoxide species into oxo metabolites (lipoxygenase-like reaction, NADPH-independent) (PubMed:21068195)
Specific Function
arachidonic acid monooxygenase activity
Gene Name
CYP1A1
Uniprot ID
P04798
Uniprot Name
Cytochrome P450 1A1
Molecular Weight
58164.815 Da
References
  1. FDA Approved Drug Products: ALIQOPA (copanlisib) for injection, for intravenous use (September 2023) [Link]

Carriers

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
Binds water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs (Probable). Its main function is the regulation of the colloidal osmotic pressure of blood (Probable). Major zinc transporter in plasma, typically binds about 80% of all plasma zinc (PubMed:19021548). Major calcium and magnesium transporter in plasma, binds approximately 45% of circulating calcium and magnesium in plasma (By similarity). Potentially has more than two calcium-binding sites and might additionally bind calcium in a non-specific manner (By similarity). The shared binding site between zinc and calcium at residue Asp-273 suggests a crosstalk between zinc and calcium transport in the blood (By similarity). The rank order of affinity is zinc > calcium > magnesium (By similarity). Binds to the bacterial siderophore enterobactin and inhibits enterobactin-mediated iron uptake of E.coli from ferric transferrin, and may thereby limit the utilization of iron and growth of enteric bacteria such as E.coli (PubMed:6234017). Does not prevent iron uptake by the bacterial siderophore aerobactin (PubMed:6234017)
Specific Function
antioxidant activity
Gene Name
ALB
Uniprot ID
P02768
Uniprot Name
Albumin
Molecular Weight
69365.94 Da
References
  1. FDA Approved Drug Products: ALIQOPA (copanlisib) for injection, for intravenous use (September 2023) [Link]

Transporters

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
Translocates drugs and phospholipids across the membrane (PubMed:2897240, PubMed:35970996, PubMed:8898203, PubMed:9038218). Catalyzes the flop of phospholipids from the cytoplasmic to the exoplasmic leaflet of the apical membrane. Participates mainly to the flop of phosphatidylcholine, phosphatidylethanolamine, beta-D-glucosylceramides and sphingomyelins (PubMed:8898203). Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells (PubMed:2897240, PubMed:35970996, PubMed:9038218)
Specific Function
ABC-type xenobiotic transporter activity
Gene Name
ABCB1
Uniprot ID
P08183
Uniprot Name
ATP-dependent translocase ABCB1
Molecular Weight
141477.255 Da
References
  1. FDA Approved Drug Products: ALIQOPA (copanlisib) for injection, for intravenous use (September 2023) [Link]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
Broad substrate specificity ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes a wide variety of physiological compounds, dietary toxins and xenobiotics from cells (PubMed:11306452, PubMed:12958161, PubMed:19506252, PubMed:20705604, PubMed:28554189, PubMed:30405239, PubMed:31003562). Involved in porphyrin homeostasis, mediating the export of protoporphyrin IX (PPIX) from both mitochondria to cytosol and cytosol to extracellular space, it also functions in the cellular export of heme (PubMed:20705604, PubMed:23189181). Also mediates the efflux of sphingosine-1-P from cells (PubMed:20110355). Acts as a urate exporter functioning in both renal and extrarenal urate excretion (PubMed:19506252, PubMed:20368174, PubMed:22132962, PubMed:31003562, PubMed:36749388). In kidney, it also functions as a physiological exporter of the uremic toxin indoxyl sulfate (By similarity). Also involved in the excretion of steroids like estrone 3-sulfate/E1S, 3beta-sulfooxy-androst-5-en-17-one/DHEAS, and other sulfate conjugates (PubMed:12682043, PubMed:28554189, PubMed:30405239). Mediates the secretion of the riboflavin and biotin vitamins into milk (By similarity). Extrudes pheophorbide a, a phototoxic porphyrin catabolite of chlorophyll, reducing its bioavailability (By similarity). Plays an important role in the exclusion of xenobiotics from the brain (Probable). It confers to cells a resistance to multiple drugs and other xenobiotics including mitoxantrone, pheophorbide, camptothecin, methotrexate, azidothymidine, and the anthracyclines daunorubicin and doxorubicin, through the control of their efflux (PubMed:11306452, PubMed:12477054, PubMed:15670731, PubMed:18056989, PubMed:31254042). In placenta, it limits the penetration of drugs from the maternal plasma into the fetus (By similarity). May play a role in early stem cell self-renewal by blocking differentiation (By similarity)
Specific Function
ABC-type xenobiotic transporter activity
Gene Name
ABCG2
Uniprot ID
Q9UNQ0
Uniprot Name
Broad substrate specificity ATP-binding cassette transporter ABCG2
Molecular Weight
72313.47 Da
References
  1. FDA Approved Drug Products: ALIQOPA (copanlisib) for injection, for intravenous use (September 2023) [Link]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
Curator comments
At clinically significant concentrations, this drug does not inhibit MATE2. However, in vitro studies have shown inhibition and supratherapeutic doses.
General Function
Multidrug efflux pump that functions as a H(+)/organic cation antiporter. Mediates the efflux of cationic compounds, such as the model cations, tetraethylammonium (TEA) and 1-methyl-4-phenylpyridinium (MPP+), the platinum-based drug oxaliplatin or weak bases that are positively charged at physiological pH, cimetidine, the platinum-based drugs cisplatin and oxaliplatin or the antidiabetic drug metformin. Mediates the efflux of endogenous compounds such as, creatinine, thiamine and estrone-3-sulfate. Plays a physiological role in the excretion of drugs, toxins and endogenous metabolites through the kidney
Specific Function
antiporter activity
Gene Name
SLC47A2
Uniprot ID
Q86VL8
Uniprot Name
Multidrug and toxin extrusion protein 2
Molecular Weight
65083.915 Da
References
  1. Kim RD, Alberts SR, Pena C, Genvresse I, Ajavon-Hartmann A, Xia C, Kelly A, Grilley-Olson JE: Phase I dose-escalation study of copanlisib in combination with gemcitabine or cisplatin plus gemcitabine in patients with advanced cancer. Br J Cancer. 2018 Feb 20;118(4):462-470. doi: 10.1038/bjc.2017.428. Epub 2018 Jan 18. [Article]
  2. FDA Approved Drug Products: ALIQOPA (copanlisib) for injection, for intravenous use (September 2023) [Link]
  3. Copanlisib FDA label [File]

Drug created at October 20, 2016 22:33 / Updated at October 07, 2024 13:24