Mocetinostat

This drug entry is a stub and has not been fully annotated. It is scheduled to be annotated soon.

Identification

Generic Name
Mocetinostat
DrugBank Accession Number
DB11830
Background

Mocetinostat has been used in trials studying the treatment of Lymphoma, Urothelial Carcinoma, Relapsed and Refractory, Myelodysplastic Syndrome, and Metastatic Leiomyosarcoma, among others.

Type
Small Molecule
Groups
Investigational
Structure
Weight
Average: 396.454
Monoisotopic: 396.169859288
Chemical Formula
C23H20N6O
Synonyms
  • Mocetinostat
External IDs
  • MGCD-0103
  • MGCD0103

Pharmacology

Indication

Not Available

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

All HDAC inhibitors induce histone H3 hyperacetylation, correlating with inhibition of proliferation, induction of cell differentiation and apoptosis.

Mechanism of action

Mocetinostat is a novel isotypic-selective inhibitor of the enzyme histone deacetylase (HDAC). HDAC inhibitors act by turning on tumour suppressor genes that have been inappropriately turned off. Tumour suppressor genes are a natural defense against cancer. It is therefore hypothesized that specifically inhibiting those HDACs involved in cancer with Mocetinostat may restore normal cell function and reduce or inhibit tumour growth.

TargetActionsOrganism
AHistone deacetylase 1
inhibitor
Humans
UHistone deacetylase 3Not AvailableHumans
UHistone deacetylase 2Not AvailableHumans
Absorption

Not Available

Volume of distribution

Not Available

Protein binding

Not Available

Metabolism
Not Available
Route of elimination

Not Available

Half-life

Not Available

Clearance

Not Available

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

Not Available

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
AcrivastineThe risk or severity of QTc prolongation can be increased when Acrivastine is combined with Mocetinostat.
AdenosineThe risk or severity of QTc prolongation can be increased when Adenosine is combined with Mocetinostat.
AjmalineThe risk or severity of QTc prolongation can be increased when Ajmaline is combined with Mocetinostat.
AlbuterolThe risk or severity of QTc prolongation can be increased when Salbutamol is combined with Mocetinostat.
AlfuzosinThe risk or severity of QTc prolongation can be increased when Alfuzosin is combined with Mocetinostat.
Food Interactions
Not Available

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
Product Ingredients
IngredientUNIICASInChI Key
Mocetinostat Dihydrobromide4V9P667Y2G944537-89-7ACPWZKZFDFBALX-UHFFFAOYSA-N

Categories

Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as benzanilides. These are aromatic compounds containing an anilide group in which the carboxamide group is substituted with a benzene ring. They have the general structure RNC(=O)R', where R,R'= benzene.
Kingdom
Organic compounds
Super Class
Benzenoids
Class
Benzene and substituted derivatives
Sub Class
Anilides
Direct Parent
Benzanilides
Alternative Parents
Pyridinylpyrimidines / Benzamides / Aniline and substituted anilines / Benzylamines / Benzoyl derivatives / Secondary alkylarylamines / Aminopyrimidines and derivatives / Pyridines and derivatives / Heteroaromatic compounds / Secondary carboxylic acid amides
show 7 more
Substituents
Amine / Amino acid or derivatives / Aminopyrimidine / Aniline or substituted anilines / Aromatic heteromonocyclic compound / Azacycle / Benzamide / Benzanilide / Benzoic acid or derivatives / Benzoyl
show 19 more
Molecular Framework
Aromatic heteromonocyclic compounds
External Descriptors
Not Available
Affected organisms
Not Available

Chemical Identifiers

UNII
A6GWB8T96J
CAS number
726169-73-9
InChI Key
HRNLUBSXIHFDHP-UHFFFAOYSA-N
InChI
InChI=1S/C23H20N6O/c24-19-5-1-2-6-21(19)28-22(30)17-9-7-16(8-10-17)14-27-23-26-13-11-20(29-23)18-4-3-12-25-15-18/h1-13,15H,14,24H2,(H,28,30)(H,26,27,29)
IUPAC Name
N-(2-aminophenyl)-4-({[4-(pyridin-3-yl)pyrimidin-2-yl]amino}methyl)benzamide
SMILES
NC1=CC=CC=C1NC(=O)C1=CC=C(CNC2=NC=CC(=N2)C2=CC=CN=C2)C=C1

References

General References
  1. Kell J: Drug evaluation: MGCD-0103, a histone deacetylase inhibitor for the treatment of cancer. Curr Opin Investig Drugs. 2007 Jun;8(6):485-92. [Article]
  2. Beckers T, Burkhardt C, Wieland H, Gimmnich P, Ciossek T, Maier T, Sanders K: Distinct pharmacological properties of second generation HDAC inhibitors with the benzamide or hydroxamate head group. Int J Cancer. 2007 Sep 1;121(5):1138-48. [Article]
  3. Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, Finn PW, Collins LS, Tumber A, Ritchie JW, Jensen PB, Lichenstein HS, Sehested M: Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J. 2008 Jan 15;409(2):581-9. [Article]
Human Metabolome Database
HMDB0254820
PubChem Compound
9865515
PubChem Substance
347828176
ChemSpider
8041206
BindingDB
24624
ChEBI
94525
ChEMBL
CHEMBL272980
ZINC
ZINC000013986811
Wikipedia
Mocetinostat

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns
2CompletedTreatmentChronic Lymphocytic Leukemia1somestatusstop reasonjust information to hide
2CompletedTreatmentLymphoma1somestatusstop reasonjust information to hide
2CompletedTreatmentMetastatic Leiomyosarcoma1somestatusstop reasonjust information to hide
2CompletedTreatmentUrothelial Carcinoma1somestatusstop reasonjust information to hide
2TerminatedTreatmentAcute Myeloid Leukemia / Myelodysplastic Syndrome2somestatusstop reasonjust information to hide

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage Forms
Not Available
Prices
Not Available
Patents
Not Available

Properties

State
Not Available
Experimental Properties
Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.00854 mg/mLALOGPS
logP3.01ALOGPS
logP3Chemaxon
logS-4.7ALOGPS
pKa (Strongest Acidic)13.98Chemaxon
pKa (Strongest Basic)4.37Chemaxon
Physiological Charge0Chemaxon
Hydrogen Acceptor Count6Chemaxon
Hydrogen Donor Count3Chemaxon
Polar Surface Area105.82 Å2Chemaxon
Rotatable Bond Count6Chemaxon
Refractivity120.32 m3·mol-1Chemaxon
Polarizability42.56 Å3Chemaxon
Number of Rings4Chemaxon
Bioavailability1Chemaxon
Rule of FiveYesChemaxon
Ghose FilterYesChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleYesChemaxon
Predicted ADMET Features
Not Available

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-000i-0090000000-34e33042be662b2724b8
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-002s-0194000000-6091887a003acc247441
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-0002-0029000000-2cbd491a9efafd08e339
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-00si-2922000000-6df2cd12b4d744a3472d
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-0a4i-0904000000-3beca7d69f8e1882f5a5
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-00yl-1922000000-bcec5e3ee75b1bf7fa99
Predicted 1H NMR Spectrum1D NMRNot Applicable
Predicted 13C NMR Spectrum1D NMRNot Applicable
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-228.1871682
predicted
DarkChem Lite v0.1.0
[M-H]-190.65244
predicted
DeepCCS 1.0 (2019)
[M+H]+228.3697682
predicted
DarkChem Lite v0.1.0
[M+H]+193.01044
predicted
DeepCCS 1.0 (2019)
[M+Na]+228.4480682
predicted
DarkChem Lite v0.1.0
[M+Na]+199.65434
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Histone deacetylase that catalyzes the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4) (PubMed:16762839, PubMed:17704056, PubMed:28497810). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (PubMed:16762839, PubMed:17704056). Histone deacetylases act via the formation of large multiprotein complexes (PubMed:16762839, PubMed:17704056). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). As part of the SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). Also functions as a deacetylase for non-histone targets, such as NR1D2, RELA, SP1, SP3, STAT3 and TSHZ3 (PubMed:12837748, PubMed:16285960, PubMed:16478997, PubMed:17996965, PubMed:19343227). Deacetylates SP proteins, SP1 and SP3, and regulates their function (PubMed:12837748, PubMed:16478997). Component of the BRG1-RB1-HDAC1 complex, which negatively regulates the CREST-mediated transcription in resting neurons (PubMed:19081374). Upon calcium stimulation, HDAC1 is released from the complex and CREBBP is recruited, which facilitates transcriptional activation (PubMed:19081374). Deacetylates TSHZ3 and regulates its transcriptional repressor activity (PubMed:19343227). Deacetylates 'Lys-310' in RELA and thereby inhibits the transcriptional activity of NF-kappa-B (PubMed:17000776). Deacetylates NR1D2 and abrogates the effect of KAT5-mediated relieving of NR1D2 transcription repression activity (PubMed:17996965). Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development (By similarity). Involved in CIART-mediated transcriptional repression of the circadian transcriptional activator: CLOCK-BMAL1 heterodimer (By similarity). Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex or CRY1 through histone deacetylation (By similarity). In addition to protein deacetylase activity, also has protein-lysine deacylase activity: acts as a protein decrotonylase by mediating decrotonylation ((2E)-butenoyl) of histones (PubMed:28497810)
Specific Function
Core promoter sequence-specific dna binding
Gene Name
HDAC1
Uniprot ID
Q13547
Uniprot Name
Histone deacetylase 1
Molecular Weight
55102.615 Da
References
  1. Beckers T, Burkhardt C, Wieland H, Gimmnich P, Ciossek T, Maier T, Sanders K: Distinct pharmacological properties of second generation HDAC inhibitors with the benzamide or hydroxamate head group. Int J Cancer. 2007 Sep 1;121(5):1138-48. [Article]
  2. Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, Finn PW, Collins LS, Tumber A, Ritchie JW, Jensen PB, Lichenstein HS, Sehested M: Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J. 2008 Jan 15;409(2):581-9. [Article]
  3. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Histone deacetylase that catalyzes the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4), and some other non-histone substrates (PubMed:21030595, PubMed:21444723, PubMed:23911289, PubMed:25301942, PubMed:28167758, PubMed:28497810, PubMed:32404892). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (PubMed:23911289). Histone deacetylases act via the formation of large multiprotein complexes (PubMed:23911289). Participates in the BCL6 transcriptional repressor activity by deacetylating the H3 'Lys-27' (H3K27) on enhancer elements, antagonizing EP300 acetyltransferase activity and repressing proximal gene expression (PubMed:23911289). Acts as a molecular chaperone for shuttling phosphorylated NR2C1 to PML bodies for sumoylation (By similarity). Contributes, together with XBP1 isoform 1, to the activation of NFE2L2-mediated HMOX1 transcription factor gene expression in a PI(3)K/mTORC2/Akt-dependent signaling pathway leading to endothelial cell (EC) survival under disturbed flow/oxidative stress (PubMed:25190803). Regulates both the transcriptional activation and repression phases of the circadian clock in a deacetylase activity-independent manner (By similarity). During the activation phase, promotes the accumulation of ubiquitinated BMAL1 at the E-boxes and during the repression phase, blocks FBXL3-mediated CRY1/2 ubiquitination and promotes the interaction of CRY1 and BMAL1 (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). Also functions as a deacetylase for non-histone targets, such as KAT5, MEF2D, MAPK14, RARA and STAT3 (PubMed:15653507, PubMed:21030595, PubMed:21444723, PubMed:25301942, PubMed:28167758). Serves as a corepressor of RARA, mediating its deacetylation and repression, leading to inhibition of RARE DNA element binding (PubMed:28167758). In association with RARA, plays a role in the repression of microRNA-10a and thereby in the inflammatory response (PubMed:28167758). In addition to protein deacetylase activity, also acts as a protein-lysine deacylase by recognizing other acyl groups: catalyzes removal of (2E)-butenoyl (crotonyl) and 2-hydroxyisobutanoyl (2-hydroxyisobutyryl) acyl groups from lysine residues, leading to protein decrotonylation and de-2-hydroxyisobutyrylation, respectively (PubMed:28497810, PubMed:29192674, PubMed:34608293). Catalyzes decrotonylation of MAPRE1/EB1 (PubMed:34608293)
Specific Function
Chromatin binding
Gene Name
HDAC3
Uniprot ID
O15379
Uniprot Name
Histone deacetylase 3
Molecular Weight
48847.385 Da
References
  1. Beckers T, Burkhardt C, Wieland H, Gimmnich P, Ciossek T, Maier T, Sanders K: Distinct pharmacological properties of second generation HDAC inhibitors with the benzamide or hydroxamate head group. Int J Cancer. 2007 Sep 1;121(5):1138-48. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Histone deacetylase that catalyzes the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4) (PubMed:28497810). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (By similarity). Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Forms transcriptional repressor complexes by associating with MAD, SIN3, YY1 and N-COR (PubMed:12724404). Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development (By similarity). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Component of the SIN3B complex that represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:37137925). Also deacetylates non-histone targets: deacetylates TSHZ3, thereby regulating its transcriptional repressor activity (PubMed:19343227). May be involved in the transcriptional repression of circadian target genes, such as PER1, mediated by CRY1 through histone deacetylation (By similarity). Involved in MTA1-mediated transcriptional corepression of TFF1 and CDKN1A (PubMed:21965678). In addition to protein deacetylase activity, also acts as a protein-lysine deacylase by recognizing other acyl groups: catalyzes removal of (2E)-butenoyl (crotonyl) and 2-hydroxyisobutanoyl (2-hydroxyisobutyryl) acyl groups from lysine residues, leading to protein decrotonylation and de-2-hydroxyisobutyrylation, respectively (PubMed:28497810, PubMed:29192674)
Specific Function
Chromatin binding
Gene Name
HDAC2
Uniprot ID
Q92769
Uniprot Name
Histone deacetylase 2
Molecular Weight
55363.855 Da
References
  1. Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, Finn PW, Collins LS, Tumber A, Ritchie JW, Jensen PB, Lichenstein HS, Sehested M: Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J. 2008 Jan 15;409(2):581-9. [Article]

Drug created at October 20, 2016 20:51 / Updated at August 26, 2024 19:23