Telotristat ethyl
Explore a selection of our essential drug information below, or:
Identification
- Summary
Telotristat ethyl is a tryptophan hydroxylase inhibitor that is used to treat carcinoid syndrome diarrhea.
- Brand Names
- Xermelo
- Generic Name
- Telotristat ethyl
- DrugBank Accession Number
- DB12095
- Background
Telotristat ethyl is a prodrug of telotristat that was approved by the FDA in March 2017 as Xermelo.8 It was previously referred to as telotristat etiprate, the hippurate salt form; however, the FDA recommends the use of the name of the neutral form rather than that of the salt.4,5 Currently, telotristat ethyl is used to treat carcinoid syndrome diarrhea from neuroendocrine tumors that are inadequately controlled by short-acting somatostatin analog (SSA) treatment.8
Neuroendocrine cells are cells that secrete regulatory peptides and biogenic amines in response to chemical, neural, or other types of stimuli.6 Neuroendocrine tumors (NET) arising from these cells can therefore secrete chemical mediators into the bloodstream to cause side effects in distant sites, a phenomenon called carcinoid syndrome.6 The most common peptides and amines secreted by NET are histamines, tachykinins, kallikrein, and serotonin.12 Overexposure to serotonin can cause severe diarrhea, one of the main clinical symptoms of carcinoid syndrome.4 Serotonin is metabolized in the urinary metabolite 5-hydroxy indole acetic acid (u5-HIAA), and high levels of u5-HIAA is associated with poor survival outcome in patients with NET.4 The first line treatment of carcinoid syndrome diarrhea is SSA, but symptoms still reoccur over the course of the disease.4
- Type
- Small Molecule
- Groups
- Approved, Investigational
- Structure
- Weight
- Average: 574.99
Monoisotopic: 574.1707009 - Chemical Formula
- C27H26ClF3N6O3
- Synonyms
- Telotristat ethyl
- External IDs
- LX 1032
- LX 1606
- LX-1032
- LX-1606
- LX1032
- LX1606
Pharmacology
- Indication
Xermelo is indicated for the treatment of carcinoid syndrome diarrhea in combination with somatostatin analog (SSA) therapy in adults inadequately controlled by SSA therapy.8
Reduce drug development failure ratesBuild, train, & validate machine-learning modelswith evidence-based and structured datasets.Build, train, & validate predictive machine-learning models with structured datasets.- Associated Conditions
Indication Type Indication Combined Product Details Approval Level Age Group Patient Characteristics Dose Form Used in combination to manage Carcinoid syndrome diarrhea Regimen in combination with: Octreotide (DB00104), Lanreotide (DB06791), Somatostatin (DB09099), Pasireotide (DB06663) •••••••••••• ••• •••••••••• •••••••••• •••• •••••••••••• •••••• ••••• ••••••• •••••• - Contraindications & Blackbox Warnings
- Prevent Adverse Drug Events TodayTap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.Avoid life-threatening adverse drug events with our Clinical API
- Pharmacodynamics
In normal mice, telotristat etiprate (administered once daily for 4 days at doses of 15–300 mg/kg/day) was found to reduce serotonin levels throughout the gastrointestinal tract.1,2 These reductions occurred in a dose dependent fashion with maximal effects observed with doses of telotristat etiprate ≥150 mg/kg. No significant change in brain serotonin or 5-hydroxyindoleacetic acid (5-HIAA, a serotonin metabolite) was observed.1,2 Similar findings were seen in Sprague-Dawley rats. Gastrointestinal motility studies were conducted in rats using the charcoal meal test.1,2 There was a significant dose-related delay in both gastrointestinal transit and gastric emptying, associated with a reduction in blood serotonin levels and proximal colon serotonin.1,2
A quantitative whole-body autoradiography study was conducted to assess the absorption, distribution and excretion of radioactivity in rats following a single oral dose of telotristat etiprate labeled with carbon 14.1,2 Rats were administered either 30 mg/kg or 100 mg/kg of the compound. The distribution of radioactivity was limited to tissues of the hepatic and renal system and the contents of the GI tract. There was no measurable radioactivity in the brain at any dose tested.1,2
- Mechanism of action
Telotristat, the active metabolite of telotristat ethyl, is an inhibitor of tryptophan hydroxylase, which mediates the rate-limiting step in serotonin biosynthesis. The in vitro inhibitory potency of telotristat towards tryptophan hydroxylase is 29 times higher than that of telotristat ethyl. Serotonin plays a role in mediating secretion, motility, inflammation, and sensation of the gastrointestinal tract, and is over-produced in patients with carcinoid syndrome. Through inhibition of tryptophan hydroxylase, telotristat and telotristat ethyl reduce the production of peripheral serotonin, and the frequency of carcinoid syndrome diarrhea.8
Target Actions Organism ATryptophan 5-hydroxylase 2 antagonistHumans ATryptophan 5-hydroxylase 1 antagonistHumans - Absorption
After a single oral dose of telotristat ethyl to healthy subjects, telotristat ethyl was absorbed and metabolized to its active metabolite, telotristat. Peak plasma concentrations of telotristat ethyl were achieved within 0.5 to 2 hours, and those of telotristat within 1 to 3 hours. Plasma concentrations thereafter declined in a biphasic manner. Following administration of a single 500 mg dose of telotristat ethyl (twice the recommended dosage) under fasted conditions in healthy subjects, the mean Cmax and AUC0-inf were 4.4 ng/mL and 6.23 ng•hr/mL, respectively for telotristat ethyl. The mean Cmax and AUC0-inf were 610 ng/mL and 2320 ng•hr/mL, respectively for telotristat. Peak plasma concentrations and AUC of telotristat ethyl and telotristat appeared to be dose proportional following administration of a single dose of telotristat ethyl in the range of 100 mg (0.4 times the lowest recommended dose to 1000 mg [4 times the highest recommended dose]) under fasted conditions.8
Following multiple-dose administration of telotristat ethyl 500 mg three times daily, there was negligible accumulation at steady state for both telotristat ethyl and telotristat.8
In patients with metastatic neuroendocrine tumors and carcinoid syndrome diarrhea treated with SSA therapy, the median Tmax for telotristat ethyl and telotristat was approximately 1 and 2 hours, respectively. Following administration of 500 mg telotristat ethyl three times daily, with meals in patients, the mean Cmax and AUC0-6hr were approximately 7 ng/mL and 22 ng•hr/mL, respectively, for telotristat ethyl. The mean Cmax and AUC0-6hr were approximately 900 ng/mL and 3000 ng•hr/mL, respectively for telotristat. The pharmacokinetic parameters for both telotristat ethyl and telotristat were highly variable with about 55% coefficient of variation.8
- Volume of distribution
The estimated apparent total volume of distribution for the active metabolite from the Population PK model of 428.1 L in a typical healthy fasted subject and 348.7 L in patients with carcinoid syndrome.11
- Protein binding
Both telotristat ethyl and telotristat are greater than 99% bound to human plasma proteins.8
- Metabolism
After oral administration, telotristat ethyl undergoes hydrolysis via carboxylesterases to telotristat, its active metabolite. Telotristat is further metabolized.8 Among the metabolites of telotristat, the systemic exposure to an acid metabolite of oxidative deaminated decarboxylated telotristat was about 35% of that of telotristat.8 In vitro data suggest that telotristat ethyl and telotristat are not substrates for CYP enzymes.8
Hover over products below to view reaction partners
- Route of elimination
Following a single 500 mg oral dose of 14C-telotristat ethyl, 93.2% of the dose was recovered over 240 hours: 92.8% was recovered in the feces, with less than 0.4% being recovered in the urine.8
- Half-life
Following a single 500 mg oral dose of telotristat ethyl in healthy subjects, the apparent half-life was approximately 0.6 hours for telotristat ethyl and 5 hours for telotristat.8
- Clearance
The apparent total clearance at steady state (CL/Fss) following oral dosing with telotristat ethyl 500 mg three times daily for 14 days (twice the recommended dosage) in healthy subjects was 2.7 and 152 L/hr for telotristat ethyl and telotristat, respectively.8
- Adverse Effects
- Improve decision support & research outcomesWith structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!Improve decision support & research outcomes with our structured adverse effects data.
- Toxicity
An embryo-fetal development study performed in rats with oral telotristat ethyl at doses up to 750 mg/kg/day (approximately 9 times the AUC [area under the plasma concentration-time curve] for the active metabolite at the RHD) during organogenesis produced no harm to embryo-fetal development.8
In pregnant rabbits treated orally with telotristat ethyl during organogenesis, an increased incidence of post-implantation loss at doses of 250 and 500 mg/kg/day (approximately 15 times the AUC for the active metabolite at RHD) and a decrease in fetal weight at 500 mg/kg/day (approximately 33 times the AUC for the active metabolite at the RHD) was observed. The adverse effects on embryo-fetal development were associated with maternal toxicity (impaired weight gain and/or mortality) at 250 and 500 mg/kg/day. No adverse effects on embryo-fetal development were observed at 125 mg/kg/day (approximately 5 times the AUC for the active metabolite at the RHD).8
A pre-/postnatal development study was conducted in rats using oral administration of 100, 200, and 500 mg/kg/day telotristat ethyl during organogenesis through lactation. An increased incidence of pup mortality was observed during postnatal days 0 to 4 at the maternal dose of 500 mg/kg/day (approximately 5 times the AUC for the active metabolite at the RHD). No developmental abnormalities or effects on growth, learning, memory or reproductive performance were observed through the maturation of offspring at maternal doses of up to 500 mg/kg/day in surviving offspring.8
In a 26-week study in transgenic (Tg.rasH2) mice, telotristat ethyl was not tumorigenic at oral doses up to 300 mg/kg/day (approximately 12 to 19 times the AUC for the active metabolite at the RHD).8
In a 2-year carcinogenicity study in Sprague-Dawley rats, telotristat ethyl was not tumorigenic at oral doses up to 170 mg/kg/day (approximately 2 to 5 times the AUC for the active metabolite at the RHD).8
Telotristat ethyl was negative in the in vitro Ames test, the in vitro chromosomal aberration test using Chinese hamster ovary cells, and the in vivo rat micronucleus test.8
Telotristat ethyl at oral doses up to 500 mg/kg/day (approximately 5 times the AUC for the active metabolite at the RHD) was found to have no effect on the fertility and reproductive performance of male or female rats.8
- Pathways
- Not Available
- Pharmacogenomic Effects/ADRs
- Not Available
Interactions
- Drug Interactions
- This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
Drug Interaction Integrate drug-drug
interactions in your software1,2-Benzodiazepine The serum concentration of 1,2-Benzodiazepine can be decreased when it is combined with Telotristat ethyl. Abemaciclib The serum concentration of Abemaciclib can be decreased when it is combined with Telotristat ethyl. Abiraterone The serum concentration of Abiraterone can be decreased when it is combined with Telotristat ethyl. Abrocitinib The serum concentration of Telotristat ethyl can be increased when it is combined with Abrocitinib. Acalabrutinib The serum concentration of Acalabrutinib can be decreased when it is combined with Telotristat ethyl. - Food Interactions
- Take with a high fat meal. High fat food increases the bioavailability of telotristat ethyl.
- Take with food. Food increases the bioavailability of telotristat ethyl.
Products
- Drug product information from 10+ global regionsOur datasets provide approved product information including:dosage, form, labeller, route of administration, and marketing period.Access drug product information from over 10 global regions.
- Product Ingredients
Ingredient UNII CAS InChI Key Telotristat etiprate 3T25U84H4U 1137608-69-5 XSFPZBUIBYMVEA-CELUQASASA-N - Active Moieties
Name Kind UNII CAS InChI Key Telotristat prodrug 381V4FCV2Z 1033805-28-5 NCLGDOBQAWBXRA-PGRDOPGGSA-N - Brand Name Prescription Products
Name Dosage Strength Route Labeller Marketing Start Marketing End Region Image Xermelo Tablet, film coated 250 mg Oral Serb Sas 2020-12-16 Not applicable EU Xermelo Tablet 250 mg/1 Oral Lexicon Pharmaceuticals, Inc. 2017-03-01 Not applicable US Xermelo Tablet 250 mg Oral Serb Sas 2018-12-07 Not applicable Canada Xermelo Tablet, film coated 250 mg Oral Serb Sas 2020-12-16 Not applicable EU Xermelo Tablet 250 mg/1 Oral Tersera Therapeutics Llc 2020-10-05 Not applicable US
Categories
- Drug Categories
- Antidiarrheals
- Cytochrome P-450 CYP2B6 Inducers
- Cytochrome P-450 CYP2B6 Inducers (strength unknown)
- Cytochrome P-450 CYP2C19 Inhibitors
- Cytochrome P-450 CYP2C19 inhibitors (strength unknown)
- Cytochrome P-450 CYP2C8 Inhibitors
- Cytochrome P-450 CYP2C8 Inhibitors (strength unknown)
- Cytochrome P-450 CYP2C9 Inhibitors
- Cytochrome P-450 CYP2C9 Inhibitors (strength unknown)
- Cytochrome P-450 CYP2D6 Inhibitors
- Cytochrome P-450 CYP2D6 Inhibitors (strength unknown)
- Cytochrome P-450 CYP3A Inducers
- Cytochrome P-450 CYP3A Inhibitors
- Cytochrome P-450 CYP3A4 Inducers
- Cytochrome P-450 CYP3A4 Inducers (strength unknown)
- Cytochrome P-450 CYP3A4 Inhibitors
- Cytochrome P-450 CYP3A4 Inhibitors (strength unknown)
- Cytochrome P-450 Enzyme Inducers
- Cytochrome P-450 Enzyme Inhibitors
- P-glycoprotein inhibitors
- P-glycoprotein substrates
- Tryptophan Hydroxylase Inhibitor
- UGT2B7 inducers
- Chemical TaxonomyProvided by Classyfire
- Description
- This compound belongs to the class of organic compounds known as phenylalanine and derivatives. These are compounds containing phenylalanine or a derivative thereof resulting from reaction of phenylalanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom.
- Kingdom
- Organic compounds
- Super Class
- Organic acids and derivatives
- Class
- Carboxylic acids and derivatives
- Sub Class
- Amino acids, peptides, and analogues
- Direct Parent
- Phenylalanine and derivatives
- Alternative Parents
- Alpha amino acid esters / Phenylpyrimidines / Phenylpyrazoles / Amphetamines and derivatives / Alkyl aryl ethers / Aminopyrimidines and derivatives / Aralkylamines / Chlorobenzenes / Fatty acid esters / Aryl chlorides show 11 more
- Substituents
- 4-phenylpyrimidine / Alkyl aryl ether / Alkyl fluoride / Alkyl halide / Alpha-amino acid ester / Amine / Aminopyrimidine / Amphetamine or derivatives / Aralkylamine / Aromatic heteromonocyclic compound show 31 more
- Molecular Framework
- Aromatic heteromonocyclic compounds
- External Descriptors
- Not Available
- Affected organisms
- Humans and other mammals
Chemical Identifiers
- UNII
- 8G388563M7
- CAS number
- 1033805-22-9
- InChI Key
- MDSQOJYHHZBZKA-GBXCKJPGSA-N
- InChI
- InChI=1S/C27H26ClF3N6O3/c1-3-39-25(38)20(32)12-16-4-6-17(7-5-16)21-14-23(35-26(33)34-21)40-24(27(29,30)31)19-9-8-18(28)13-22(19)37-11-10-15(2)36-37/h4-11,13-14,20,24H,3,12,32H2,1-2H3,(H2,33,34,35)/t20-,24+/m0/s1
- IUPAC Name
- ethyl (2S)-2-amino-3-(4-{2-amino-6-[(1R)-1-[4-chloro-2-(3-methyl-1H-pyrazol-1-yl)phenyl]-2,2,2-trifluoroethoxy]pyrimidin-4-yl}phenyl)propanoate
- SMILES
- CCOC(=O)[C@@H](N)CC1=CC=C(C=C1)C1=NC(N)=NC(O[C@H](C2=CC=C(Cl)C=C2N2C=CC(C)=N2)C(F)(F)F)=C1
References
- General References
- Lamarca A, Barriuso J, McNamara MG, Hubner RA, Valle JW: Telotristat ethyl: a new option for the management of carcinoid syndrome. Expert Opin Pharmacother. 2016 Dec;17(18):2487-2498. Epub 2016 Nov 16. [Article]
- Kulke MH, O'Dorisio T, Phan A, Bergsland E, Law L, Banks P, Freiman J, Frazier K, Jackson J, Yao JC, Kvols L, Lapuerta P, Zambrowicz B, Fleming D, Sands A: Telotristat etiprate, a novel serotonin synthesis inhibitor, in patients with carcinoid syndrome and diarrhea not adequately controlled by octreotide. Endocr Relat Cancer. 2014 Oct;21(5):705-14. doi: 10.1530/ERC-14-0173. Epub 2014 Jul 10. [Article]
- Tian DD, Leonowens C, Cox EJ, Gonzalez-Perez V, Frederick KS, Scarlett YV, Fisher MB, Paine MF: Indinavir Increases Midazolam N-Glucuronidation in Humans: Identification of an Alternate CYP3A Inhibitor Using an In Vitro to In Vivo Approach. Drug Metab Dispos. 2019 Jul;47(7):724-731. doi: 10.1124/dmd.119.087007. Epub 2019 Apr 26. [Article]
- Pavel M, Gross DJ, Benavent M, Perros P, Srirajaskanthan R, Warner RRP, Kulke MH, Anthony LB, Kunz PL, Horsch D, Weickert MO, Lapuerta P, Jiang W, Kassler-Taub K, Wason S, Fleming R, Fleming D, Garcia-Carbonero R: Telotristat ethyl in carcinoid syndrome: safety and efficacy in the TELECAST phase 3 trial. Endocr Relat Cancer. 2018 Mar;25(3):309-322. doi: 10.1530/ERC-17-0455. Epub 2018 Jan 12. [Article]
- Kulke MH, Horsch D, Caplin ME, Anthony LB, Bergsland E, Oberg K, Welin S, Warner RR, Lombard-Bohas C, Kunz PL, Grande E, Valle JW, Fleming D, Lapuerta P, Banks P, Jackson S, Zambrowicz B, Sands AT, Pavel M: Telotristat Ethyl, a Tryptophan Hydroxylase Inhibitor for the Treatment of Carcinoid Syndrome. J Clin Oncol. 2017 Jan;35(1):14-23. doi: 10.1200/JCO.2016.69.2780. Epub 2016 Oct 28. [Article]
- Dillon JS, Chandrasekharan C: Telotristat ethyl: a novel agent for the therapy of carcinoid syndrome diarrhea. Future Oncol. 2018 May;14(12):1155-1164. doi: 10.2217/fon-2017-0340. Epub 2018 Jan 19. [Article]
- FDA Review- Telotristat [Link]
- FDA Approved Drug Products: XERMELO® (telotristat ethyl) tablets, for oral use 2022 [Link]
- FDA Approved Drug Products: Xermelo (telotristat ethyl) tablets for oral use [Link]
- CLINICAL PHARMACOLOGY AND BIOPHARMACEUTICS REVIEW(S) [Link]
- Assessment Report: Xermelo (International non-proprietary name telotristat ethyl) [Link]
- Carcinoid Syndrome [Link]
- External Links
- PubChem Compound
- 25025298
- PubChem Substance
- 347828399
- ChemSpider
- 28189674
- BindingDB
- 445704
- 1872441
- ChEMBL
- CHEMBL2105695
- ZINC
- ZINC000043205655
- Wikipedia
- Telotristat_ethyl
Clinical Trials
- Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package Phase Status Purpose Conditions Count Start Date Why Stopped 100+ additional columns Unlock 175K+ rows when you subscribe.View sample dataNot Available Completed Not Available Carcinoid Syndrome 1 somestatus stop reason just information to hide 3 Completed Treatment Carcinoid Syndrome 3 somestatus stop reason just information to hide 3 Withdrawn Treatment Carcinoid Heart Disease / Small Intestinal Neuroendocrine Tumor 1 somestatus stop reason just information to hide 2 Active Not Recruiting Supportive Care Locally Advanced Unresectable Pancreatic Adenocarcinoma / Pancreatic Adenocarcinoma Metastatic / Recurrent Pancreatic Adenocarcinoma / Stage III Pancreatic Cancer AJCC v8 / Stage IV Pancreatic Cancer AJCC v8 1 somestatus stop reason just information to hide 2 Completed Treatment Carcinoid Syndrome 2 somestatus stop reason just information to hide
Pharmacoeconomics
- Manufacturers
- Not Available
- Packagers
- Not Available
- Dosage Forms
Form Route Strength Tablet Oral 250 mg Tablet Oral 250 mg/1 Tablet, film coated Oral 250 MG - Prices
- Not Available
- Patents
Patent Number Pediatric Extension Approved Expires (estimated) Region US7553840 No 2009-06-30 2027-12-11 US US8193204 No 2012-06-05 2031-02-27 US US7968559 No 2011-06-28 2027-12-11 US US8653094 No 2014-02-18 2028-12-19 US US7709493 No 2010-05-04 2027-12-11 US
Properties
- State
- Solid
- Experimental Properties
Property Value Source water solubility 71 mg/mL L43342 - Predicted Properties
Property Value Source Water Solubility 0.00294 mg/mL ALOGPS logP 5.35 ALOGPS logP 5.54 Chemaxon logS -5.3 ALOGPS pKa (Strongest Acidic) 16.06 Chemaxon pKa (Strongest Basic) 6.94 Chemaxon Physiological Charge 1 Chemaxon Hydrogen Acceptor Count 7 Chemaxon Hydrogen Donor Count 2 Chemaxon Polar Surface Area 131.17 Å2 Chemaxon Rotatable Bond Count 11 Chemaxon Refractivity 144.98 m3·mol-1 Chemaxon Polarizability 55.38 Å3 Chemaxon Number of Rings 4 Chemaxon Bioavailability 0 Chemaxon Rule of Five No Chemaxon Ghose Filter No Chemaxon Veber's Rule No Chemaxon MDDR-like Rule Yes Chemaxon - Predicted ADMET Features
- Not Available
Spectra
- Mass Spec (NIST)
- Not Available
- Spectra
- Chromatographic Properties
Collision Cross Sections (CCS)
Adduct CCS Value (Å2) Source type Source [M-H]- 224.68744 predictedDeepCCS 1.0 (2019) [M+H]+ 226.64502 predictedDeepCCS 1.0 (2019) [M+Na]+ 232.38544 predictedDeepCCS 1.0 (2019)
Targets
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Antagonist
- General Function
- Not Available
- Specific Function
- Iron ion binding
- Gene Name
- TPH2
- Uniprot ID
- Q8IWU9
- Uniprot Name
- Tryptophan 5-hydroxylase 2
- Molecular Weight
- 56056.295 Da
References
- Kulke MH, O'Dorisio T, Phan A, Bergsland E, Law L, Banks P, Freiman J, Frazier K, Jackson J, Yao JC, Kvols L, Lapuerta P, Zambrowicz B, Fleming D, Sands A: Telotristat etiprate, a novel serotonin synthesis inhibitor, in patients with carcinoid syndrome and diarrhea not adequately controlled by octreotide. Endocr Relat Cancer. 2014 Oct;21(5):705-14. doi: 10.1530/ERC-14-0173. Epub 2014 Jul 10. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Antagonist
- General Function
- Oxidizes L-tryptophan to 5-hydroxy-l-tryptophan in the rate-determining step of serotonin biosynthesis
- Specific Function
- Iron ion binding
- Gene Name
- TPH1
- Uniprot ID
- P17752
- Uniprot Name
- Tryptophan 5-hydroxylase 1
- Molecular Weight
- 50984.725 Da
References
- Kulke MH, O'Dorisio T, Phan A, Bergsland E, Law L, Banks P, Freiman J, Frazier K, Jackson J, Yao JC, Kvols L, Lapuerta P, Zambrowicz B, Fleming D, Sands A: Telotristat etiprate, a novel serotonin synthesis inhibitor, in patients with carcinoid syndrome and diarrhea not adequately controlled by octreotide. Endocr Relat Cancer. 2014 Oct;21(5):705-14. doi: 10.1530/ERC-14-0173. Epub 2014 Jul 10. [Article]
Enzymes
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- No
- Actions
- InhibitorInducer
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981)
- Specific Function
- 1,8-cineole 2-exo-monooxygenase activity
- Gene Name
- CYP3A4
- Uniprot ID
- P08684
- Uniprot Name
- Cytochrome P450 3A4
- Molecular Weight
- 57342.67 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- No
- Actions
- Inducer
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of endocannabinoids and steroids (PubMed:12865317, PubMed:21289075). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the epoxidation of double bonds of arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:21289075). Hydroxylates steroid hormones, including testosterone at C-16 and estrogens at C-2 (PubMed:12865317, PubMed:21289075). Plays a role in the oxidative metabolism of xenobiotics, including plant lipids and drugs (PubMed:11695850, PubMed:22909231). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850)
- Specific Function
- Anandamide 11,12 epoxidase activity
- Gene Name
- CYP2B6
- Uniprot ID
- P20813
- Uniprot Name
- Cytochrome P450 2B6
- Molecular Weight
- 56277.81 Da
References
- FDA Approved Drug Products: XERMELO® (telotristat ethyl) tablets, for oral use 2022 [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- No
- Actions
- Substrate
- General Function
- Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs (PubMed:18762277, PubMed:7980644, PubMed:9169443, PubMed:9490062). Hydrolyzes aromatic and aliphatic esters, but has no catalytic activity toward amides or a fatty acyl-CoA ester (PubMed:18762277, PubMed:7980644, PubMed:9169443, PubMed:9490062). Hydrolyzes the methyl ester group of cocaine to form benzoylecgonine (PubMed:7980644). Catalyzes the transesterification of cocaine to form cocaethylene (PubMed:7980644). Displays fatty acid ethyl ester synthase activity, catalyzing the ethyl esterification of oleic acid to ethyloleate (PubMed:7980644). Converts monoacylglycerides to free fatty acids and glycerol. Hydrolyzes of 2-arachidonoylglycerol and prostaglandins (PubMed:21049984). Hydrolyzes cellular cholesteryl esters to free cholesterols and promotes reverse cholesterol transport (RCT) by facilitating both the initial and final steps in the process (PubMed:11015575, PubMed:16024911, PubMed:16971496, PubMed:18762277). First of all, allows free cholesterol efflux from macrophages to extracellular cholesterol acceptors and secondly, releases free cholesterol from lipoprotein-delivered cholesteryl esters in the liver for bile acid synthesis or direct secretion into the bile (PubMed:16971496, PubMed:18599737, PubMed:18762277)
- Specific Function
- Carboxylesterase activity
- Gene Name
- CES1
- Uniprot ID
- P23141
- Uniprot Name
- Liver carboxylesterase 1
- Molecular Weight
- 62520.62 Da
References
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Substrate
- General Function
- Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs (PubMed:9169443). Shows high catalytic efficiency for hydrolysis of cocaine, 4-methylumbelliferyl acetate, heroin and 6-monoacetylmorphine (PubMed:9169443). Hydrolyzes aspirin, substrates with large alcohol group and small acyl group and endogenous lipids such as triacylglycerol (PubMed:28677105). Converts monoacylglycerides to free fatty acids and glycerol. Hydrolyzes of 2-arachidonoylglycerol and prostaglandins (PubMed:21049984)
- Specific Function
- Carboxylesterase activity
- Gene Name
- CES2
- Uniprot ID
- O00748
- Uniprot Name
- Cocaine esterase
- Molecular Weight
- 61806.41 Da
References
- CLINICAL PHARMACOLOGY AND BIOPHARMACEUTICS REVIEW(S) [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- No
- Actions
- Inducer
- General Function
- UDP-glucuronosyltransferase (UGT) that catalyzes phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase the metabolite's water solubility, thereby facilitating excretion into either the urine or bile (PubMed:18719240, PubMed:23288867). Essential for the elimination and detoxification of drugs, xenobiotics and endogenous compounds (PubMed:18719240, PubMed:23288867). Catalyzes the glucuronidation of the endogenous estrogen hormones such as estradiol and estriol (PubMed:18719240, PubMed:23288867)
- Specific Function
- Glucuronosyltransferase activity
- Gene Name
- UGT2B4
- Uniprot ID
- P06133
- Uniprot Name
- UDP-glucuronosyltransferase 2B4
- Molecular Weight
- 60512.035 Da
References
- Tian DD, Leonowens C, Cox EJ, Gonzalez-Perez V, Frederick KS, Scarlett YV, Fisher MB, Paine MF: Indinavir Increases Midazolam N-Glucuronidation in Humans: Identification of an Alternate CYP3A Inhibitor Using an In Vitro to In Vivo Approach. Drug Metab Dispos. 2019 Jul;47(7):724-731. doi: 10.1124/dmd.119.087007. Epub 2019 Apr 26. [Article]
- FDA Approved Drug Products: XERMELO® (telotristat ethyl) tablets, for oral use 2022 [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- No
- Actions
- Inducer
- General Function
- UDP-glucuronosyltransferase (UGT) that catalyzes phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase the metabolite's water solubility, thereby facilitating excretion into either the urine or bile (PubMed:10702251, PubMed:15470161, PubMed:15472229, PubMed:17442341, PubMed:18674515, PubMed:18719240, PubMed:19022937, PubMed:23288867, PubMed:23756265, PubMed:26220143). Essential for the elimination and detoxification of drugs, xenobiotics and endogenous compounds (PubMed:15470161, PubMed:18674515, PubMed:23756265). Catalyzes the glucuronidation of endogenous steroid hormones such as androgens (epitestosterone, androsterone) and estrogens (estradiol, epiestradiol, estriol, catechol estrogens) (PubMed:15472229, PubMed:17442341, PubMed:18719240, PubMed:19022937, PubMed:2159463, PubMed:23288867, PubMed:26220143). Also regulates the levels of retinoic acid, a major metabolite of vitamin A involved in apoptosis, cellular growth and differentiation, and embryonic development (PubMed:10702251). Contributes to bile acid (BA) detoxification by catalyzing the glucuronidation of BA substrates, which are natural detergents for dietary lipids absorption (PubMed:23756265). Involved in the glucuronidation of the AGTR1 angiotensin receptor antagonist losartan, caderastan and zolarsatan, drugs which can inhibit the effect of angiotensin II (PubMed:18674515). Also metabolizes mycophenolate, an immunosuppressive agent (PubMed:15470161)
- Specific Function
- Glucuronosyltransferase activity
- Gene Name
- UGT2B7
- Uniprot ID
- P16662
- Uniprot Name
- UDP-glucuronosyltransferase 2B7
- Molecular Weight
- 60720.15 Da
References
- Tian DD, Leonowens C, Cox EJ, Gonzalez-Perez V, Frederick KS, Scarlett YV, Fisher MB, Paine MF: Indinavir Increases Midazolam N-Glucuronidation in Humans: Identification of an Alternate CYP3A Inhibitor Using an In Vitro to In Vivo Approach. Drug Metab Dispos. 2019 Jul;47(7):724-731. doi: 10.1124/dmd.119.087007. Epub 2019 Apr 26. [Article]
- FDA Approved Drug Products: XERMELO® (telotristat ethyl) tablets, for oral use 2022 [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- No
- Actions
- Inhibitor
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids and steroids (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:15766564, PubMed:19965576, PubMed:7574697, PubMed:9866708). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Exhibits low catalytic activity for the formation of catechol estrogens from 17beta-estradiol (E2) and estrone (E1), namely 2-hydroxy E1 and E2 (PubMed:12865317). Catalyzes bisallylic hydroxylation and hydroxylation with double-bond migration of polyunsaturated fatty acids (PUFA) (PubMed:9435160, PubMed:9866708). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan (PubMed:25994031)
- Specific Function
- (r)-limonene 6-monooxygenase activity
- Gene Name
- CYP2C9
- Uniprot ID
- P11712
- Uniprot Name
- Cytochrome P450 2C9
- Molecular Weight
- 55627.365 Da
References
- Assessment Report: Xermelo (International non-proprietary name telotristat ethyl) [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- No
- Actions
- Inhibitor
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of polyunsaturated fatty acids (PUFA) (PubMed:18577768, PubMed:19965576, PubMed:20972997). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18577768, PubMed:19965576, PubMed:20972997). Catalyzes the hydroxylation of carbon-hydrogen bonds. Hydroxylates PUFA specifically at the omega-1 position (PubMed:18577768). Catalyzes the epoxidation of double bonds of PUFA (PubMed:19965576, PubMed:20972997). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine. Hydroxylates fenbendazole at the 4' position (PubMed:23959307)
- Specific Function
- (r)-limonene 6-monooxygenase activity
- Gene Name
- CYP2C19
- Uniprot ID
- P33261
- Uniprot Name
- Cytochrome P450 2C19
- Molecular Weight
- 55944.565 Da
References
- Assessment Report: Xermelo (International non-proprietary name telotristat ethyl) [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- No
- Actions
- Inhibitor
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of fatty acids, steroids and retinoids (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:19965576, PubMed:20972997). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 20-hydroxyeicosatetraenoic acid ethanolamide (20-HETE-EA) and 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:18698000, PubMed:21289075). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Catalyzes the oxidative transformations of all-trans retinol to all-trans retinal, a precursor for the active form all-trans-retinoic acid (PubMed:10681376). Also involved in the oxidative metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants
- Specific Function
- Anandamide 11,12 epoxidase activity
- Gene Name
- CYP2D6
- Uniprot ID
- P10635
- Uniprot Name
- Cytochrome P450 2D6
- Molecular Weight
- 55768.94 Da
References
- Assessment Report: Xermelo (International non-proprietary name telotristat ethyl) [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- No
- Actions
- Inhibitor
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Primarily catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) with a preference for the last double bond (PubMed:15766564, PubMed:19965576, PubMed:7574697). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes all trans-retinoic acid toward its 4-hydroxylated form (PubMed:11093772). Displays 16-alpha hydroxylase activity toward estrogen steroid hormones, 17beta-estradiol (E2) and estrone (E1) (PubMed:14559847). Plays a role in the oxidative metabolism of xenobiotics. It is the principal enzyme responsible for the metabolism of the anti-cancer drug paclitaxel (taxol) (PubMed:26427316)
- Specific Function
- Arachidonic acid epoxygenase activity
- Gene Name
- CYP2C8
- Uniprot ID
- P10632
- Uniprot Name
- Cytochrome P450 2C8
- Molecular Weight
- 55824.275 Da
References
- Assessment Report: Xermelo (International non-proprietary name telotristat ethyl) [Link]
Carriers
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- No
- Actions
- Binder
- General Function
- Broad substrate specificity ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes a wide variety of physiological compounds, dietary toxins and xenobiotics from cells (PubMed:11306452, PubMed:12958161, PubMed:19506252, PubMed:20705604, PubMed:28554189, PubMed:30405239, PubMed:31003562). Involved in porphyrin homeostasis, mediating the export of protoporphyrin IX (PPIX) from both mitochondria to cytosol and cytosol to extracellular space, it also functions in the cellular export of heme (PubMed:20705604, PubMed:23189181). Also mediates the efflux of sphingosine-1-P from cells (PubMed:20110355). Acts as a urate exporter functioning in both renal and extrarenal urate excretion (PubMed:19506252, PubMed:20368174, PubMed:22132962, PubMed:31003562, PubMed:36749388). In kidney, it also functions as a physiological exporter of the uremic toxin indoxyl sulfate (By similarity). Also involved in the excretion of steroids like estrone 3-sulfate/E1S, 3beta-sulfooxy-androst-5-en-17-one/DHEAS, and other sulfate conjugates (PubMed:12682043, PubMed:28554189, PubMed:30405239). Mediates the secretion of the riboflavin and biotin vitamins into milk (By similarity). Extrudes pheophorbide a, a phototoxic porphyrin catabolite of chlorophyll, reducing its bioavailability (By similarity). Plays an important role in the exclusion of xenobiotics from the brain (Probable). It confers to cells a resistance to multiple drugs and other xenobiotics including mitoxantrone, pheophorbide, camptothecin, methotrexate, azidothymidine, and the anthracyclines daunorubicin and doxorubicin, through the control of their efflux (PubMed:11306452, PubMed:12477054, PubMed:15670731, PubMed:18056989, PubMed:31254042). In placenta, it limits the penetration of drugs from the maternal plasma into the fetus (By similarity). May play a role in early stem cell self-renewal by blocking differentiation (By similarity)
- Specific Function
- Abc-type xenobiotic transporter activity
- Gene Name
- ABCG2
- Uniprot ID
- Q9UNQ0
- Uniprot Name
- Broad substrate specificity ATP-binding cassette transporter ABCG2
- Molecular Weight
- 72313.47 Da
References
- FDA Approved Drug Products: XERMELO® (telotristat ethyl) tablets, for oral use 2022 [Link]
Transporters
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- No
- Actions
- SubstrateInhibitor
- General Function
- Translocates drugs and phospholipids across the membrane (PubMed:2897240, PubMed:35970996, PubMed:8898203, PubMed:9038218). Catalyzes the flop of phospholipids from the cytoplasmic to the exoplasmic leaflet of the apical membrane. Participates mainly to the flop of phosphatidylcholine, phosphatidylethanolamine, beta-D-glucosylceramides and sphingomyelins (PubMed:8898203). Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells (PubMed:2897240, PubMed:35970996, PubMed:9038218)
- Specific Function
- Abc-type xenobiotic transporter activity
- Gene Name
- ABCB1
- Uniprot ID
- P08183
- Uniprot Name
- ATP-dependent translocase ABCB1
- Molecular Weight
- 141477.255 Da
References
- FDA Approved Drug Products: XERMELO® (telotristat ethyl) tablets, for oral use 2022 [Link]
Drug created at October 20, 2016 21:20 / Updated at February 15, 2023 07:39