Risdiplam
Explore a selection of our essential drug information below, or:
Identification
- Summary
Risdiplam is an oral mRNA splicing modifier used in the treatment of spinal muscular atrophy (SMA).
- Brand Names
- Evrysdi
- Generic Name
- Risdiplam
- DrugBank Accession Number
- DB15305
- Background
Risdiplam is an orally bioavailable mRNA splicing modifier used for the treatment of spinal muscular atrophy (SMA).5 It increases systemic SMN protein concentrations by improving the efficiency of SMN2 gene transcription. This mechanism of action is similar to its predecessor nusinersen, the biggest difference being their route of administration: nusinersen requires intrathecal administration, as does the one-time gene therapy onasemnogene abeparvovec, whereas risdiplam offers the ease of oral bioavailability.9,4
Risdiplam was approved by the FDA in August 2020 for the treatment of spinal muscular atrophy (SMA).6,7 Set to be substantially cheaper than other available SMA therapies,9 risdiplam appears to provide a novel and relatively accessible treatment option for patients with SMA regardless of severity or type.
- Type
- Small Molecule
- Groups
- Approved, Investigational
- Structure
- Weight
- Average: 401.474
Monoisotopic: 401.196408389 - Chemical Formula
- C22H23N7O
- Synonyms
- Risdiplam
- Risdiplamum
- External IDs
- RG-7916
- RG7916
- RO-7034067
- RO7034067
- WHO 10614
Pharmacology
- Indication
Risdiplam is indicated for the treatment of spinal muscular atrophy (SMA).10
Reduce drug development failure ratesBuild, train, & validate machine-learning modelswith evidence-based and structured datasets.Build, train, & validate predictive machine-learning models with structured datasets.- Associated Conditions
Indication Type Indication Combined Product Details Approval Level Age Group Patient Characteristics Dose Form Treatment of Spinal muscular atrophy (sma) •••••••••••• ••••••• ••• •••••••• - Contraindications & Blackbox Warnings
- Prevent Adverse Drug Events TodayTap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.Avoid life-threatening adverse drug events with our Clinical API
- Pharmacodynamics
Risdiplam helps to alleviate symptoms of spinal muscular atrophy by stimulating the production of a critical protein in which these patients are deficient. Early trials with risdiplam demonstrated up to a 2-fold increase in SMN protein concentration in SMA patients after 12 weeks of therapy.2
- Mechanism of action
Spinal muscular atrophy (SMA) is a severe and progressive congenital neuromuscular disease resulting from mutations in the survival of motor neuron 1 (SMN1) gene responsible for making SMN proteins.3 Clinical features of SMA include degeneration of motor neurons in the spinal cord which ultimately leads to muscular atrophy and, in some cases, loss of physical strength.1 SMN proteins are expressed ubiquitously throughout the body and are thought to hold diverse intracellular roles in DNA repair, cell signaling, endocytosis, and autophagy.1 A secondary SMN gene (SMN2) can also produce SMN proteins, but a small nucleotide substitution in its sequence results in the exclusion of exon 7 during splicing in approximately 85% of the transcripts - this means that only ~15% of the SMN proteins produced by SMN2 are functional,1 which is insufficient to compensate for the deficits caused by SMN1 mutations. Emerging evidence suggests that many cells and tissues are selectively vulnerable to reduced SMN concentrations, making this protein a desirable target in the treatment of SMA.1
Risdiplam is an mRNA splicing modifier for SMN2 that increases the inclusion of exon 7 during splicing, which ultimately increases the amount of functional SMN protein produced by SMN2.3 It does so by binding to two sites in SMN2 pre-mRNA: the 5' splice site (5'ss) of intron 7 and the exonic splicing enhancer 2 (ESE2) of exon 7.4
- Absorption
The Tmax following oral administration is approximately 1-4 hours.3,7 Following once-daily administration with a morning meal (or after breastfeeding), risdiplam reaches steady-state in approximately 7-14 days.7 The pharmacokinetics of risdiplam were found to be approximately linear between all studied dosages in patients with SMA.7
- Volume of distribution
Following oral administration, risdiplam distributes well into the central nervous system and peripheral tissues.1 The apparent volume of distribution at steady-state is 6.3 L/kg.7
- Protein binding
Risdiplam is approximately 89% protein-bound in plasma, primarily to serum albumin.7
- Metabolism
The metabolism of risdiplam is mediated primarily by flavin monooxygenases 1 and 3 (FMO1 and FMO3), with some involvement of CYP1A1, CYP2J2, CYP3A4, and CYP3A7.7 Parent drug comprises approximately 83% of circulating drug material.7
A pharmacologically-inactive metabolite, M1, has been identified as the major circulating metabolite - this M1 metabolite has been observed in vitro to inhibit MATE1 and MATE2-K transporters, similar to the parent drug.7
Hover over products below to view reaction partners
- Route of elimination
Following the oral administration of 18mg risdiplam, approximately 53% of the dose was excreted in the feces and 28% was excreted in the urine.7 Unchanged parent drug comprised 14% of the dose excreted in feces and 8% of the dose excreted in urine.7
- Half-life
The terminal elimination half-life of risdiplam is approximately 50 hours in healthy adults.7
- Clearance
For a 14.9kg patient, the apparent clearance of risdiplam is 6.3 L/kg.7
- Adverse Effects
- Improve decision support & research outcomesWith structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!Improve decision support & research outcomes with our structured adverse effects data.
- Toxicity
Data regarding overdose of risdiplam are unavailable. Symptoms of overdose are likely to be consistent with risdiplam's adverse effect profile, and may therefore involve significant fever, diarrhea, and skin reactions.7
- Pathways
- Not Available
- Pharmacogenomic Effects/ADRs
- Not Available
Interactions
- Drug Interactions
- This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
Drug Interaction Integrate drug-drug
interactions in your softwareAbemaciclib The serum concentration of Abemaciclib can be increased when it is combined with Risdiplam. Acyclovir The serum concentration of Acyclovir can be increased when it is combined with Risdiplam. Baricitinib The serum concentration of Baricitinib can be increased when it is combined with Risdiplam. Cefradine The serum concentration of Cefradine can be increased when it is combined with Risdiplam. Cephalexin The serum concentration of Cephalexin can be increased when it is combined with Risdiplam. - Food Interactions
- Take after a meal.
- Take at the same time every day.
Products
- Drug product information from 10+ global regionsOur datasets provide approved product information including:dosage, form, labeller, route of administration, and marketing period.Access drug product information from over 10 global regions.
- Brand Name Prescription Products
Name Dosage Strength Route Labeller Marketing Start Marketing End Region Image Evrysdi Powder, for solution 0.75 mg/1mL Oral Genentech Inc. 2020-08-07 Not applicable US Evrysdi Powder, for solution 0.75 mg/ml Oral Roche Registration Gmb H 2021-05-07 Not applicable EU Evrysdi Powder, for solution 0.75 mg / mL Oral Hoffmann La Roche 2021-05-19 Not applicable Canada
Categories
- ATC Codes
- M09AX10 — Risdiplam
- Drug Categories
- BCRP/ABCG2 Substrates
- Cytochrome P-450 CYP3A Substrates
- Cytochrome P-450 CYP3A4 Substrates
- Cytochrome P-450 CYP3A7 Substrates
- Cytochrome P-450 Substrates
- MATE 1 Inhibitors
- MATE 2 Inhibitors
- MATE inhibitors
- Musculo-Skeletal System
- Other Miscellaneous Therapeutic Agents
- P-glycoprotein substrates
- Peripheral Nervous System Agents
- Survival Motor Neuron-2-directed RNA Interaction
- Survival of Motor Neuron 2 Splicing Modifier
- Classification
- Not classified
- Affected organisms
- Not Available
Chemical Identifiers
- UNII
- 76RS4S2ET1
- CAS number
- 1825352-65-5
- InChI Key
- ASKZRYGFUPSJPN-UHFFFAOYSA-N
- InChI
- InChI=1S/C22H23N7O/c1-14-9-18(26-29-11-15(2)24-21(14)29)17-10-20(30)28-12-16(3-4-19(28)25-17)27-8-7-23-22(13-27)5-6-22/h3-4,9-12,23H,5-8,13H2,1-2H3
- IUPAC Name
- 7-{4,7-diazaspiro[2.5]octan-7-yl}-2-{2,8-dimethylimidazo[1,2-b]pyridazin-6-yl}-4H-pyrido[1,2-a]pyrimidin-4-one
- SMILES
- CC1=CN2N=C(C=C(C)C2=N1)C1=CC(=O)N2C=C(C=CC2=N1)N1CCNC2(CC2)C1
References
- Synthesis Reference
Ratni H, Ebeling M, Baird J, Bendels S, Bylund J, Chen KS, Denk N, Feng Z, Green L, Guerard M, Jablonski P, Jacobsen B, Khwaja O, Kletzl H, Ko CP, Kustermann S, Marquet A, Metzger F, Mueller B, Naryshkin NA, Paushkin SV, Pinard E, Poirier A, Reutlinger M, Weetall M, Zeller A, Zhao X, Mueller L: Discovery of Risdiplam, a Selective Survival of Motor Neuron-2 ( SMN2) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA). J Med Chem. 2018 Aug 9;61(15):6501-6517. doi: 10.1021/acs.jmedchem.8b00741. Epub 2018 Jul 25.
- General References
- Ramdas S, Servais L: New treatments in spinal muscular atrophy: an overview of currently available data. Expert Opin Pharmacother. 2020 Feb;21(3):307-315. doi: 10.1080/14656566.2019.1704732. [Article]
- Ratni H, Ebeling M, Baird J, Bendels S, Bylund J, Chen KS, Denk N, Feng Z, Green L, Guerard M, Jablonski P, Jacobsen B, Khwaja O, Kletzl H, Ko CP, Kustermann S, Marquet A, Metzger F, Mueller B, Naryshkin NA, Paushkin SV, Pinard E, Poirier A, Reutlinger M, Weetall M, Zeller A, Zhao X, Mueller L: Discovery of Risdiplam, a Selective Survival of Motor Neuron-2 ( SMN2) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA). J Med Chem. 2018 Aug 9;61(15):6501-6517. doi: 10.1021/acs.jmedchem.8b00741. Epub 2018 Jul 25. [Article]
- Sturm S, Gunther A, Jaber B, Jordan P, Al Kotbi N, Parkar N, Cleary Y, Frances N, Bergauer T, Heinig K, Kletzl H, Marquet A, Ratni H, Poirier A, Muller L, Czech C, Khwaja O: A phase 1 healthy male volunteer single escalating dose study of the pharmacokinetics and pharmacodynamics of risdiplam (RG7916, RO7034067), a SMN2 splicing modifier. Br J Clin Pharmacol. 2019 Jan;85(1):181-193. doi: 10.1111/bcp.13786. Epub 2018 Nov 16. [Article]
- Messina S, Sframeli M: New Treatments in Spinal Muscular Atrophy: Positive Results and New Challenges. J Clin Med. 2020 Jul 13;9(7). pii: jcm9072222. doi: 10.3390/jcm9072222. [Article]
- BiopharmaDive: 5 FDA Approval Decisions to Watch in the 2nd Quarter [Link]
- BusinessWire: FDA Approves Genentech’s Evrysdi (risdiplam) for Treatment of Spinal Muscular Atrophy (SMA) in Adults and Children 2 Months and Older [Link]
- FDA Approved Drug Products: Evrysdi (risdiplam) powder for oral solution [Link]
- CaymanChem: Risdiplam MSDS [Link]
- BiopharmaDive: First oral drug for spinal muscular atrophy approved by FDA [Link]
- FDA Approved Drug Products: EVRYSDI (risdiplam) Powder for oral solution (May 2022) [Link]
- External Links
- ChemSpider
- 67886354
- 2390935
- ChEMBL
- CHEMBL4297528
- Wikipedia
- Risdiplam
Clinical Trials
- Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package Phase Status Purpose Conditions Count Start Date Why Stopped 100+ additional columns Unlock 175K+ rows when you subscribe.View sample data4 Active Not Recruiting Treatment Spinal Muscular Atrophy (SMA) 1 somestatus stop reason just information to hide 4 Recruiting Treatment Spinal Muscular Atrophy (SMA) 3 somestatus stop reason just information to hide 2 Active Not Recruiting Treatment Spinal Muscular Atrophy (SMA) 2 somestatus stop reason just information to hide 2 Completed Treatment Spinal Muscular Atrophy (SMA) 2 somestatus stop reason just information to hide 2 Recruiting Treatment Spinal Muscular Atrophy (SMA) 1 somestatus stop reason just information to hide
Pharmacoeconomics
- Manufacturers
- Not Available
- Packagers
- Not Available
- Dosage Forms
Form Route Strength Powder, for solution Oral 0.75 mg / mL Powder, for solution Oral 0.75 mg/1mL Powder, for solution Oral 0.75 MG/ML Powder, for solution Oral 60 mg Powder Oral 0.75 mg/mL Powder, for solution Enteral; Oral 60 mg - Prices
- Not Available
- Patents
Patent Number Pediatric Extension Approved Expires (estimated) Region US9969754 No 2018-05-15 2035-05-11 US US9586955 No 2017-03-07 2033-02-08 US US11534444 No 2018-10-04 2038-10-04 US US11827646 No 2016-01-25 2036-01-25 US US11938136 No 2016-11-08 2036-11-08 US
Properties
- State
- Solid
- Experimental Properties
- Not Available
- Predicted Properties
Property Value Source Water Solubility 0.0958 mg/mL ALOGPS logP 1.22 ALOGPS logP 1.18 Chemaxon logS -3.6 ALOGPS pKa (Strongest Basic) 8.7 Chemaxon Physiological Charge 1 Chemaxon Hydrogen Acceptor Count 6 Chemaxon Hydrogen Donor Count 1 Chemaxon Polar Surface Area 78.13 Å2 Chemaxon Rotatable Bond Count 2 Chemaxon Refractivity 127.06 m3·mol-1 Chemaxon Polarizability 45.12 Å3 Chemaxon Number of Rings 6 Chemaxon Bioavailability 1 Chemaxon Rule of Five Yes Chemaxon Ghose Filter Yes Chemaxon Veber's Rule No Chemaxon MDDR-like Rule No Chemaxon - Predicted ADMET Features
- Not Available
Spectra
- Mass Spec (NIST)
- Not Available
- Spectra
Spectrum Spectrum Type Splash Key Predicted MS/MS Spectrum - 10V, Positive (Annotated) Predicted LC-MS/MS splash10-0udi-0000900000-8877198e95556f902a76 Predicted MS/MS Spectrum - 10V, Negative (Annotated) Predicted LC-MS/MS splash10-0udi-0100900000-e828d71424d108336d45 Predicted MS/MS Spectrum - 20V, Positive (Annotated) Predicted LC-MS/MS splash10-0udr-0009700000-308665b5630a1162fecd Predicted MS/MS Spectrum - 20V, Negative (Annotated) Predicted LC-MS/MS splash10-0udi-0006900000-af4390b95085f885ab0e Predicted MS/MS Spectrum - 40V, Positive (Annotated) Predicted LC-MS/MS splash10-0k9i-0009100000-9e923794253e9444b7fd Predicted MS/MS Spectrum - 40V, Negative (Annotated) Predicted LC-MS/MS splash10-00e9-0619000000-2f76c5bf31819fc36939 Predicted 1H NMR Spectrum 1D NMR Not Applicable Predicted 13C NMR Spectrum 1D NMR Not Applicable - Chromatographic Properties
Collision Cross Sections (CCS)
Not Available
Enzymes
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Substrate
- General Function
- Broad spectrum monooxygenase that catalyzes the oxygenation of a wide variety of nitrogen- and sulfur-containing compounds including xenobiotics (PubMed:32156684). Catalyzes the S-oxygenation of hypotaurine to produce taurine, an organic osmolyte involved in cell volume regulation as well as a variety of cytoprotective and developmental processes (PubMed:32156684). In vitro, catalyzes the N-oxygenation of trimethylamine (TMA) to produce trimethylamine N-oxide (TMAO) and could therefore participate to the detoxification of this compound that is generated by the action of gut microbiota from dietary precursors such as choline, choline containing compounds, betaine or L-carnitine (By similarity)
- Specific Function
- Flavin adenine dinucleotide binding
- Gene Name
- FMO1
- Uniprot ID
- Q01740
- Uniprot Name
- Flavin-containing monooxygenase 1
- Molecular Weight
- 60310.285 Da
References
- FDA Approved Drug Products: Evrysdi (risdiplam) powder for oral solution [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Substrate
- General Function
- Essential hepatic enzyme that catalyzes the oxygenation of a wide variety of nitrogen- and sulfur-containing compounds including drugs as well as dietary compounds (PubMed:10759686, PubMed:30381441, PubMed:32156684). Plays an important role in the metabolism of trimethylamine (TMA), via the production of trimethylamine N-oxide (TMAO) metabolite (PubMed:9776311). TMA is generated by the action of gut microbiota using dietary precursors such as choline, choline containing compounds, betaine or L-carnitine. By regulating TMAO concentration, FMO3 directly impacts both platelet responsiveness and rate of thrombus formation (PubMed:29981269)
- Specific Function
- Albendazole monooxygenase activity
- Gene Name
- FMO3
- Uniprot ID
- P31513
- Uniprot Name
- Flavin-containing monooxygenase 3
- Molecular Weight
- 60032.975 Da
References
- FDA Approved Drug Products: Evrysdi (risdiplam) powder for oral solution [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Substrate
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15041462, PubMed:15805301, PubMed:18577768, PubMed:19965576, PubMed:20972997). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15041462, PubMed:15805301, PubMed:18577768, PubMed:19965576, PubMed:20972997). Catalyzes the hydroxylation of carbon-hydrogen bonds. Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C15-alpha and C16-alpha positions (PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15805301). Displays different regioselectivities for polyunsaturated fatty acids (PUFA) hydroxylation (PubMed:15041462, PubMed:18577768). Catalyzes the epoxidation of double bonds of certain PUFA (PubMed:15041462, PubMed:19965576, PubMed:20972997). Converts arachidonic acid toward epoxyeicosatrienoic acid (EET) regioisomers, 8,9-, 11,12-, and 14,15-EET, that function as lipid mediators in the vascular system (PubMed:20972997). Displays an absolute stereoselectivity in the epoxidation of eicosapentaenoic acid (EPA) producing the 17(R),18(S) enantiomer (PubMed:15041462). May play an important role in all-trans retinoic acid biosynthesis in extrahepatic tissues. Catalyzes two successive oxidative transformation of all-trans retinol to all-trans retinal and then to the active form all-trans retinoic acid (PubMed:10681376). May also participate in eicosanoids metabolism by converting hydroperoxide species into oxo metabolites (lipoxygenase-like reaction, NADPH-independent) (PubMed:21068195)
- Specific Function
- Arachidonic acid monooxygenase activity
- Gene Name
- CYP1A1
- Uniprot ID
- P04798
- Uniprot Name
- Cytochrome P450 1A1
- Molecular Weight
- 58164.815 Da
References
- FDA Approved Drug Products: Evrysdi (risdiplam) powder for oral solution [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Substrate
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of polyunsaturated fatty acids (PUFA) in the cardiovascular system (PubMed:19965576, PubMed:8631948). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:19965576, PubMed:8631948). Catalyzes the epoxidation of double bonds of PUFA (PubMed:19965576, PubMed:8631948). Converts arachidonic acid to four regioisomeric epoxyeicosatrienoic acids (EpETrE), likely playing a major role in the epoxidation of endogenous cardiac arachidonic acid pools (PubMed:8631948). In endothelial cells, participates in eicosanoids metabolism by converting hydroperoxide species into hydroxy epoxy metabolites. In combination with 15-lipoxygenase metabolizes arachidonic acid and converts hydroperoxyicosatetraenoates (HpETEs) into hydroxy epoxy eicosatrienoates (HEETs), which are precursors of vasodilatory trihydroxyicosatrienoic acids (THETAs). This hydroperoxide isomerase activity is NADPH- and O2-independent (PubMed:19737933). Catalyzes the monooxygenation of a various xenobiotics, such as danazol, amiodarone, terfenadine, astemizole, thioridazine, tamoxifen, cyclosporin A and nabumetone (PubMed:19923256). Catalyzes hydroxylation of the anthelmintics albendazole and fenbendazole (PubMed:23959307). Catalyzes the sulfoxidation of fenbedazole (PubMed:19923256)
- Specific Function
- Arachidonic acid 11,12-epoxygenase activity
- Gene Name
- CYP2J2
- Uniprot ID
- P51589
- Uniprot Name
- Cytochrome P450 2J2
- Molecular Weight
- 57610.165 Da
References
- FDA Approved Drug Products: Evrysdi (risdiplam) powder for oral solution [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Substrate
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981)
- Specific Function
- 1,8-cineole 2-exo-monooxygenase activity
- Gene Name
- CYP3A4
- Uniprot ID
- P08684
- Uniprot Name
- Cytochrome P450 3A4
- Molecular Weight
- 57342.67 Da
References
- FDA Approved Drug Products: Evrysdi (risdiplam) powder for oral solution [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Substrate
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of steroid hormones and vitamins during embryogenesis (PubMed:11093772, PubMed:12865317, PubMed:14559847, PubMed:17178770, PubMed:9555064). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:11093772, PubMed:12865317, PubMed:14559847, PubMed:17178770, PubMed:9555064). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes 3beta-hydroxyandrost-5-en-17-one (dehydroepiandrosterone, DHEA), a precursor in the biosynthesis of androgen and estrogen steroid hormones (PubMed:17178770, PubMed:9555064). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1), particularly D-ring hydroxylated estrone at the C16-alpha position (PubMed:12865317, PubMed:14559847). Mainly hydroxylates all trans-retinoic acid (atRA) to 4-hydroxyretinoate and may play a role in atRA clearance during fetal development (PubMed:11093772). Also involved in the oxidative metabolism of xenobiotics including anticonvulsants (PubMed:9555064)
- Specific Function
- All-trans retinoic acid 18-hydroxylase activity
- Gene Name
- CYP3A7
- Uniprot ID
- P24462
- Uniprot Name
- Cytochrome P450 3A7
- Molecular Weight
- 57469.95 Da
References
- FDA Approved Drug Products: Evrysdi (risdiplam) powder for oral solution [Link]
- Kind
- Protein group
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Inhibitor
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981)
- Specific Function
- 1,8-cineole 2-exo-monooxygenase activity
Components:
Name | UniProt ID |
---|---|
Cytochrome P450 3A4 | P08684 |
Cytochrome P450 3A43 | Q9HB55 |
Cytochrome P450 3A5 | P20815 |
Cytochrome P450 3A7 | P24462 |
References
- FDA Approved Drug Products: Evrysdi (risdiplam) powder for oral solution [Link]
Carriers
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Binder
- General Function
- Binds water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs (Probable). Its main function is the regulation of the colloidal osmotic pressure of blood (Probable). Major zinc transporter in plasma, typically binds about 80% of all plasma zinc (PubMed:19021548). Major calcium and magnesium transporter in plasma, binds approximately 45% of circulating calcium and magnesium in plasma (By similarity). Potentially has more than two calcium-binding sites and might additionally bind calcium in a non-specific manner (By similarity). The shared binding site between zinc and calcium at residue Asp-273 suggests a crosstalk between zinc and calcium transport in the blood (By similarity). The rank order of affinity is zinc > calcium > magnesium (By similarity). Binds to the bacterial siderophore enterobactin and inhibits enterobactin-mediated iron uptake of E.coli from ferric transferrin, and may thereby limit the utilization of iron and growth of enteric bacteria such as E.coli (PubMed:6234017). Does not prevent iron uptake by the bacterial siderophore aerobactin (PubMed:6234017)
- Specific Function
- Antioxidant activity
- Gene Name
- ALB
- Uniprot ID
- P02768
- Uniprot Name
- Albumin
- Molecular Weight
- 69365.94 Da
References
- FDA Approved Drug Products: Evrysdi (risdiplam) powder for oral solution [Link]
Transporters
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Inhibitor
- General Function
- Multidrug efflux pump that functions as a H(+)/organic cation antiporter (PubMed:16330770, PubMed:17509534). Plays a physiological role in the excretion of cationic compounds including endogenous metabolites, drugs, toxins through the kidney and liver, into urine and bile respectively (PubMed:16330770, PubMed:17495125, PubMed:17509534, PubMed:17582384, PubMed:18305230, PubMed:19158817, PubMed:21128598, PubMed:24961373). Mediates the efflux of endogenous compounds such as creatinine, vitamin B1/thiamine, agmatine and estrone-3-sulfate (PubMed:16330770, PubMed:17495125, PubMed:17509534, PubMed:17582384, PubMed:18305230, PubMed:19158817, PubMed:21128598, PubMed:24961373). May also contribute to regulate the transport of cationic compounds in testis across the blood-testis-barrier (Probable)
- Specific Function
- Antiporter activity
- Gene Name
- SLC47A1
- Uniprot ID
- Q96FL8
- Uniprot Name
- Multidrug and toxin extrusion protein 1
- Molecular Weight
- 61921.585 Da
References
- FDA Approved Drug Products: Evrysdi (risdiplam) powder for oral solution [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Inhibitor
- General Function
- Multidrug efflux pump that functions as a H(+)/organic cation antiporter. Mediates the efflux of cationic compounds, such as the model cations, tetraethylammonium (TEA) and 1-methyl-4-phenylpyridinium (MPP+), the platinum-based drug oxaliplatin or weak bases that are positively charged at physiological pH, cimetidine, the platinum-based drugs cisplatin and oxaliplatin or the antidiabetic drug metformin. Mediates the efflux of endogenous compounds such as, creatinine, thiamine and estrone-3-sulfate. Plays a physiological role in the excretion of drugs, toxins and endogenous metabolites through the kidney
- Specific Function
- Antiporter activity
- Gene Name
- SLC47A2
- Uniprot ID
- Q86VL8
- Uniprot Name
- Multidrug and toxin extrusion protein 2
- Molecular Weight
- 65083.915 Da
References
- FDA Approved Drug Products: Evrysdi (risdiplam) powder for oral solution [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Substrate
- General Function
- Translocates drugs and phospholipids across the membrane (PubMed:2897240, PubMed:35970996, PubMed:8898203, PubMed:9038218). Catalyzes the flop of phospholipids from the cytoplasmic to the exoplasmic leaflet of the apical membrane. Participates mainly to the flop of phosphatidylcholine, phosphatidylethanolamine, beta-D-glucosylceramides and sphingomyelins (PubMed:8898203). Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells (PubMed:2897240, PubMed:35970996, PubMed:9038218)
- Specific Function
- Abc-type xenobiotic transporter activity
- Gene Name
- ABCB1
- Uniprot ID
- P08183
- Uniprot Name
- ATP-dependent translocase ABCB1
- Molecular Weight
- 141477.255 Da
References
- FDA Approved Drug Products: Evrysdi (risdiplam) powder for oral solution [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Substrate
- General Function
- Broad substrate specificity ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes a wide variety of physiological compounds, dietary toxins and xenobiotics from cells (PubMed:11306452, PubMed:12958161, PubMed:19506252, PubMed:20705604, PubMed:28554189, PubMed:30405239, PubMed:31003562). Involved in porphyrin homeostasis, mediating the export of protoporphyrin IX (PPIX) from both mitochondria to cytosol and cytosol to extracellular space, it also functions in the cellular export of heme (PubMed:20705604, PubMed:23189181). Also mediates the efflux of sphingosine-1-P from cells (PubMed:20110355). Acts as a urate exporter functioning in both renal and extrarenal urate excretion (PubMed:19506252, PubMed:20368174, PubMed:22132962, PubMed:31003562, PubMed:36749388). In kidney, it also functions as a physiological exporter of the uremic toxin indoxyl sulfate (By similarity). Also involved in the excretion of steroids like estrone 3-sulfate/E1S, 3beta-sulfooxy-androst-5-en-17-one/DHEAS, and other sulfate conjugates (PubMed:12682043, PubMed:28554189, PubMed:30405239). Mediates the secretion of the riboflavin and biotin vitamins into milk (By similarity). Extrudes pheophorbide a, a phototoxic porphyrin catabolite of chlorophyll, reducing its bioavailability (By similarity). Plays an important role in the exclusion of xenobiotics from the brain (Probable). It confers to cells a resistance to multiple drugs and other xenobiotics including mitoxantrone, pheophorbide, camptothecin, methotrexate, azidothymidine, and the anthracyclines daunorubicin and doxorubicin, through the control of their efflux (PubMed:11306452, PubMed:12477054, PubMed:15670731, PubMed:18056989, PubMed:31254042). In placenta, it limits the penetration of drugs from the maternal plasma into the fetus (By similarity). May play a role in early stem cell self-renewal by blocking differentiation (By similarity)
- Specific Function
- Abc-type xenobiotic transporter activity
- Gene Name
- ABCG2
- Uniprot ID
- Q9UNQ0
- Uniprot Name
- Broad substrate specificity ATP-binding cassette transporter ABCG2
- Molecular Weight
- 72313.47 Da
References
- FDA Approved Drug Products: Evrysdi (risdiplam) powder for oral solution [Link]
Drug created at May 20, 2019 15:10 / Updated at August 03, 2023 15:04