Pranlukast

Identification

Summary

Pranlukast is a leukotriene receptor antagonist for the treatment of allergic rhinitis and asthma symptoms.

Generic Name
Pranlukast
DrugBank Accession Number
DB01411
Background

Pranlukast is a cysteinyl leukotriene receptor-1 antagonist. It antagonizes or reduces bronchospasm caused, principally in asthmatics, by an allergic reaction to accidentally or inadvertently encountered allergens.

Type
Small Molecule
Groups
Investigational
Structure
Weight
Average: 481.512
Monoisotopic: 481.175004241
Chemical Formula
C27H23N5O4
Synonyms
  • Pranlukast
External IDs
  • CCN 00401
  • CCN-00401
  • ONO 1078
  • ONO-1078
  • ONO-RS 411
  • RS 411
  • RS-411
  • SB 205312
  • SB-205312

Pharmacology

Indication

Used as an adjunct to the standard therapy of inhaled steroids with inhaled long- and/or short-acting beta-agonists.

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Associated Conditions
Indication TypeIndicationCombined Product DetailsApproval LevelAge GroupPatient CharacteristicsDose Form
Treatment ofAllergic rhinitis (ar)••••••••••••••••••• ••• ••••••••• ••••••
Treatment ofAllergic rhinitis (ar)••••••••••••
Treatment ofAsthma••••••••••••••••••• ••• ••••••••• ••••••
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Pranlukast is a cysteinyl leukotriene receptor-1 antagonist.

Mechanism of action

Pranlukast selectively antagonizes leukotriene D4 (LTD4) at the cysteinyl leukotriene receptor, CysLT1, in the human airway. Pranlukast inhibits the actions of LTD4 at the CysLT1 receptor, preventing airway edema, smooth muscle contraction, and enhanced secretion of thick, viscous mucus.

TargetActionsOrganism
ACysteinyl leukotriene receptor 1
antagonist
Humans
UTumor necrosis factor
other/unknown
Humans
UInterleukin-5
antagonist
Humans
UEosinophil cationic protein
other/unknown
Humans
UNuclear factor NF-kappa-B p105 subunit
other/unknown
Humans
UMucin-2
other/unknown
Humans
UNuclear factor NF-kappa-B
inhibitor
Humans
Absorption

Not Available

Volume of distribution

Not Available

Protein binding

Not Available

Metabolism

Hepatic

Route of elimination

Not Available

Half-life

Not Available

Clearance

Not Available

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

Side effects include headache, abdominal or stomach pain, cough, dental pain, dizziness, fever, heartburn, skin rash, stuffy nose, weakness or unusual tiredness.

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
AbametapirThe serum concentration of Pranlukast can be increased when it is combined with Abametapir.
AbrocitinibThe metabolism of Abrocitinib can be decreased when combined with Pranlukast.
AcenocoumarolThe metabolism of Acenocoumarol can be decreased when combined with Pranlukast.
AcetohexamideThe metabolism of Acetohexamide can be decreased when combined with Pranlukast.
Acetylsalicylic acidThe metabolism of Acetylsalicylic acid can be decreased when combined with Pranlukast.
Food Interactions
Not Available

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
Product Ingredients
IngredientUNIICASInChI Key
Pranlukast hydrateFR702N558K150821-03-7MSXTUBJFNBZPGC-UHFFFAOYSA-N

Categories

ATC Codes
R03DC02 — Pranlukast
Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as chromones. These are compounds containing a benzopyran-4-one moiety.
Kingdom
Organic compounds
Super Class
Organoheterocyclic compounds
Class
Benzopyrans
Sub Class
1-benzopyrans
Direct Parent
Chromones
Alternative Parents
Benzamides / Phenoxy compounds / Phenol ethers / Benzoyl derivatives / Pyranones and derivatives / Alkyl aryl ethers / Tetrazoles / Heteroaromatic compounds / Secondary carboxylic acid amides / Oxacyclic compounds
show 5 more
Substituents
Alkyl aryl ether / Aromatic heteropolycyclic compound / Azacycle / Azole / Benzamide / Benzenoid / Benzoic acid or derivatives / Benzoyl / Carboxamide group / Carboxylic acid derivative
show 18 more
Molecular Framework
Aromatic heteropolycyclic compounds
External Descriptors
Not Available
Affected organisms
  • Humans and other mammals

Chemical Identifiers

UNII
TB8Z891092
CAS number
103177-37-3
InChI Key
NBQKINXMPLXUET-UHFFFAOYSA-N
InChI
InChI=1S/C27H23N5O4/c33-23-17-24(26-29-31-32-30-26)36-25-21(23)10-6-11-22(25)28-27(34)19-12-14-20(15-13-19)35-16-5-4-9-18-7-2-1-3-8-18/h1-3,6-8,10-15,17H,4-5,9,16H2,(H,28,34)(H,29,30,31,32)
IUPAC Name
N-[4-oxo-2-(2H-1,2,3,4-tetrazol-5-yl)-4H-chromen-8-yl]-4-(4-phenylbutoxy)benzamide
SMILES
O=C(NC1=C2OC(=CC(=O)C2=CC=C1)C1=NNN=N1)C1=CC=C(OCCCCC2=CC=CC=C2)C=C1

References

Synthesis Reference

Seiei Sasatani, Masashi Shiota, Yoshinori Ii, "Granules containing pranlukast, process for producing the granules, and method of improving adhesiveness of pranlukast." U.S. Patent US5876760, issued March, 1995.

US5876760
General References
  1. Nakade S, Ueda S, Ohno T, Nakayama K, Miyata Y, Yukawa E, Higuchi S: Population pharmacokinetics of pranlukast hydrate dry syrup in children with allergic rhinitis and bronchial asthma. Drug Metab Pharmacokinet. 2006 Apr;21(2):133-9. [Article]
  2. ilacaBak: Pranlux (pranlukast) oral capsules [Link]
PubChem Compound
4887
PubChem Substance
46508129
ChemSpider
4718
BindingDB
50023198
ChEBI
94810
ChEMBL
CHEMBL21333
ZINC
ZINC000001542146
Therapeutic Targets Database
DAP000977
PharmGKB
PA134698661
PDBe Ligand
KNT
Wikipedia
Pranlukast
PDB Entries
6rz4

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns
3CompletedTreatmentChronic Sinusitis1somestatusstop reasonjust information to hide
3CompletedTreatmentSeasonal Allergic Rhinitis1somestatusstop reasonjust information to hide
1Unknown StatusTreatmentHealthy Volunteers (HV)1somestatusstop reasonjust information to hide

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage Forms
FormRouteStrength
PowderOral
CapsuleOral
Prices
Not Available
Patents
Not Available

Properties

State
Solid
Experimental Properties
Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.0032 mg/mLALOGPS
logP4.82ALOGPS
logP4.67Chemaxon
logS-5.2ALOGPS
pKa (Strongest Acidic)6.86Chemaxon
pKa (Strongest Basic)-1.7Chemaxon
Physiological Charge-1Chemaxon
Hydrogen Acceptor Count7Chemaxon
Hydrogen Donor Count2Chemaxon
Polar Surface Area119.09 Å2Chemaxon
Rotatable Bond Count9Chemaxon
Refractivity139.15 m3·mol-1Chemaxon
Polarizability51.41 Å3Chemaxon
Number of Rings5Chemaxon
Bioavailability1Chemaxon
Rule of FiveYesChemaxon
Ghose FilterNoChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleYesChemaxon
Predicted ADMET Features
PropertyValueProbability
Human Intestinal Absorption+0.991
Blood Brain Barrier+0.9446
Caco-2 permeable-0.6689
P-glycoprotein substrateNon-substrate0.5976
P-glycoprotein inhibitor INon-inhibitor0.719
P-glycoprotein inhibitor IINon-inhibitor0.6885
Renal organic cation transporterNon-inhibitor0.8511
CYP450 2C9 substrateNon-substrate0.8643
CYP450 2D6 substrateNon-substrate0.8403
CYP450 3A4 substrateNon-substrate0.5077
CYP450 1A2 substrateNon-inhibitor0.7009
CYP450 2C9 inhibitorNon-inhibitor0.5597
CYP450 2D6 inhibitorNon-inhibitor0.8714
CYP450 2C19 inhibitorNon-inhibitor0.5194
CYP450 3A4 inhibitorNon-inhibitor0.5679
CYP450 inhibitory promiscuityHigh CYP Inhibitory Promiscuity0.6646
Ames testAMES toxic0.5986
CarcinogenicityNon-carcinogens0.875
BiodegradationNot ready biodegradable0.997
Rat acute toxicity2.2158 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.7439
hERG inhibition (predictor II)Non-inhibitor0.7501
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397)

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-001i-1340900000-56f64f3c9e341a9e0dee
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-001r-0005900000-b18c3becb89797a689c9
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-001i-1511900000-3ba61725c3b435b5629d
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-00l7-9314500000-03d16a78e7ba240a76ce
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-000x-9610700000-5606846bc3cbed27bfc6
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-0019-4435900000-51aed43770663045dd4e
Predicted 1H NMR Spectrum1D NMRNot Applicable
Predicted 13C NMR Spectrum1D NMRNot Applicable
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-235.9053621
predicted
DarkChem Lite v0.1.0
[M-H]-200.57753
predicted
DeepCCS 1.0 (2019)
[M+H]+238.9091621
predicted
DarkChem Lite v0.1.0
[M+H]+202.9731
predicted
DeepCCS 1.0 (2019)
[M+Na]+237.3226621
predicted
DarkChem Lite v0.1.0
[M+Na]+208.88562
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Antagonist
General Function
Receptor for cysteinyl leukotrienes mediating bronchoconstriction of individuals with and without asthma. Stimulation by LTD4 results in the contraction and proliferation of smooth muscle, edema, eosinophil migration and damage to the mucus layer in the lung. This response is mediated via a G-protein that activates a phosphatidylinositol-calcium second messenger system. The rank order of affinities for the leukotrienes is LTD4 >> LTE4 = LTC4 >> LTB4
Specific Function
Cysteinyl leukotriene receptor activity
Gene Name
CYSLTR1
Uniprot ID
Q9Y271
Uniprot Name
Cysteinyl leukotriene receptor 1
Molecular Weight
38540.55 Da
References
  1. Yoo SH, Park SH, Song JS, Kang KH, Park CS, Yoo JH, Choi BW, Hahn MH: Clinical effects of pranlukast, an oral leukotriene receptor antagonist, in mild-to-moderate asthma: a 4 week randomized multicentre controlled trial. Respirology. 2001 Mar;6(1):15-21. [Article]
  2. Ogasawara H, Ishii S, Yokomizo T, Kakinuma T, Komine M, Tamaki K, Shimizu T, Izumi T: Characterization of mouse cysteinyl leukotriene receptors mCysLT1 and mCysLT2: differential pharmacological properties and tissue distribution. J Biol Chem. 2002 May 24;277(21):18763-8. Epub 2002 Feb 19. [Article]
  3. Ishinaga H, Takeuchi K, Kishioka C, Suzuki S, Basbaum C, Majima Y: Pranlukast inhibits NF-kappaB activation and MUC2 gene expression in cultured human epithelial cells. Pharmacology. 2005 Feb;73(2):89-96. Epub 2004 Oct 5. [Article]
  4. Shirasaki H, Kanaizumi E, Seki N, Kikuchi M, Watanabe K, Konno N, Himi T: Distribution of specific binding sites for cysteinyl leukotriene 1 receptor antagonist in human nasal mucosa. Acta Otolaryngol. 2006 Sep;126(9):948-51. [Article]
  5. Ding Q, Wei EQ, Zhang YJ, Zhang WP, Chen Z: Cysteinyl leukotriene receptor 1 is involved in N-methyl-D-aspartate-mediated neuronal injury in mice. Acta Pharmacol Sin. 2006 Dec;27(12):1526-36. [Article]
  6. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]
  7. Singh RK, Tandon R, Dastidar SG, Ray A: A review on leukotrienes and their receptors with reference to asthma. J Asthma. 2013 Nov;50(9):922-31. doi: 10.3109/02770903.2013.823447. Epub 2013 Aug 16. [Article]
  8. Suzuki S, Takeuchi K, Ishinaga H, Basbaum C, Majima Y: Leukotriene D4 upregulates MUC2 gene transcription in human epithelial cells. Pharmacology. 2008;81(3):221-8. doi: 10.1159/000112866. Epub 2008 Jan 7. [Article]
  9. Haneda Y, Hasegawa S, Hirano R, Hashimoto K, Ohsaki A, Ichiyama T: Leukotriene D4 enhances tumor necrosis factor-alpha-induced vascular endothelial growth factor production in human monocytes/macrophages. Cytokine. 2011 Jul;55(1):24-8. doi: 10.1016/j.cyto.2011.03.018. Epub 2011 Apr 8. [Article]
  10. Ichiyama T, Hasegawa S, Umeda M, Terai K, Matsubara T, Furukawa S: Pranlukast inhibits NF-kappa B activation in human monocytes/macrophages and T cells. Clin Exp Allergy. 2003 Jun;33(6):802-7. [Article]
  11. Saito K, Nagata M, Kikuchi I, Sakamoto Y: Leukotriene D4 and eosinophil transendothelial migration, superoxide generation, and degranulation via beta2 integrin. Ann Allergy Asthma Immunol. 2004 Dec;93(6):594-600. doi: 10.1016/S1081-1206(10)61269-0. [Article]
  12. Figueroa EE, Kramer M, Strange K, Denton JS: CysLT1 receptor antagonists pranlukast and zafirlukast inhibit LRRC8-mediated volume regulated anion channels independently of the receptor. Am J Physiol Cell Physiol. 2019 Oct 1;317(4):C857-C866. doi: 10.1152/ajpcell.00281.2019. Epub 2019 Aug 7. [Article]
  13. Reques FG, Rodriguez JL: Tolerability of leukotriene modifiers in asthma: a review of clinical experience. BioDrugs. 1999 Jun;11(6):385-94. doi: 10.2165/00063030-199911060-00003. [Article]
  14. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Other/unknown
General Function
Cytokine that binds to TNFRSF1A/TNFR1 and TNFRSF1B/TNFBR. It is mainly secreted by macrophages and can induce cell death of certain tumor cell lines. It is potent pyrogen causing fever by direct action or by stimulation of interleukin-1 secretion and is implicated in the induction of cachexia, Under certain conditions it can stimulate cell proliferation and induce cell differentiation. Impairs regulatory T-cells (Treg) function in individuals with rheumatoid arthritis via FOXP3 dephosphorylation. Up-regulates the expression of protein phosphatase 1 (PP1), which dephosphorylates the key 'Ser-418' residue of FOXP3, thereby inactivating FOXP3 and rendering Treg cells functionally defective (PubMed:23396208). Key mediator of cell death in the anticancer action of BCG-stimulated neutrophils in combination with DIABLO/SMAC mimetic in the RT4v6 bladder cancer cell line (PubMed:16829952, PubMed:22517918, PubMed:23396208). Induces insulin resistance in adipocytes via inhibition of insulin-induced IRS1 tyrosine phosphorylation and insulin-induced glucose uptake. Induces GKAP42 protein degradation in adipocytes which is partially responsible for TNF-induced insulin resistance (By similarity). Plays a role in angiogenesis by inducing VEGF production synergistically with IL1B and IL6 (PubMed:12794819). Promotes osteoclastogenesis and therefore mediates bone resorption (By similarity)
Specific Function
Cytokine activity
Gene Name
TNF
Uniprot ID
P01375
Uniprot Name
Tumor necrosis factor
Molecular Weight
25644.15 Da
References
  1. Tomari S, Matsuse H, Machida I, Kondo Y, Kawano T, Obase Y, Fukushima C, Shimoda T, Kohno S: Pranlukast, a cysteinyl leukotriene receptor 1 antagonist, attenuates allergen-specific tumour necrosis factor alpha production and nuclear factor kappa B nuclear translocation in peripheral blood monocytes from atopic asthmatics. Clin Exp Allergy. 2003 Jun;33(6):795-801. [Article]
  2. Ichiyama T, Hasegawa S, Umeda M, Terai K, Matsubara T, Furukawa S: Pranlukast inhibits NF-kappa B activation in human monocytes/macrophages and T cells. Clin Exp Allergy. 2003 Jun;33(6):802-7. [Article]
  3. Ichiyama T, Kajimoto M, Hasegawa M, Hashimoto K, Matsubara T, Furukawa S: Cysteinyl leukotrienes enhance tumour necrosis factor-alpha-induced matrix metalloproteinase-9 in human monocytes/macrophages. Clin Exp Allergy. 2007 Apr;37(4):608-14. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Antagonist
General Function
Homodimeric cytokine expressed predominantly by T-lymphocytes and NK cells that plays an important role in the survival, differentiation, and chemotaxis of eosinophils (PubMed:2653458, PubMed:9010276). Acts also on activated and resting B-cells to induce immunoglobulin production, growth, and differentiation (By similarity). Mechanistically, exerts its biological effects through a receptor composed of IL5RA subunit and the cytokine receptor common subunit beta/CSF2RB (PubMed:1495999, PubMed:22528658). Binding to the receptor leads to activation of various kinases including LYN, SYK and JAK2 and thereby propagates signals through the RAS-MAPK and JAK-STAT5 pathways respectively (PubMed:7613138)
Specific Function
Cytokine activity
Gene Name
IL5
Uniprot ID
P05113
Uniprot Name
Interleukin-5
Molecular Weight
15237.695 Da
References
  1. Hojo M, Suzuki M, Maghni K, Hamid Q, Powell WS, Martin JG: Role of cysteinyl leukotrienes in CD4(+) T cell-driven late allergic airway responses. J Pharmacol Exp Ther. 2000 May;293(2):410-6. [Article]
  2. Nabe T, Yamashita K, Miura M, Kawai T, Kohno S: Cysteinyl leukotriene-dependent interleukin-5 production leading to eosinophilia during late asthmatic response in guinea-pigs. Clin Exp Allergy. 2002 Apr;32(4):633-40. [Article]
  3. Nogimura M, Nagata M, Sutani A, Saito K, Sakamoto Y: [Study on the effect of cysteinyl leukotriene antagonist, pranlukast hydrate, on adhesive interaction between eosinophils and pulmonary endothelial cells]. Nihon Kokyuki Gakkai Zasshi. 2002 Dec;40(12):919-24. [Article]
  4. Fukushima C, Matsuse H, Hishikawa Y, Kondo Y, Machida I, Saeki S, Kawano T, Tomari S, Obase Y, Shimoda T, Koji T, Kohno S: Pranlukast, a leukotriene receptor antagonist, inhibits interleukin-5 production via a mechanism distinct from leukotriene receptor antagonism. Int Arch Allergy Immunol. 2005 Feb;136(2):165-72. Epub 2005 Jan 12. [Article]
  5. Matsuse H, Kondo Y, Machida I, Kawano T, Saeki S, Tomari S, Obase Y, Fukushima C, Mizuta Y, Kohno S: Effects of anti-inflammatory therapies on recurrent and low-grade respiratory syncytial virus infections in a murine model of asthma. Ann Allergy Asthma Immunol. 2006 Jul;97(1):55-60. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Other/unknown
General Function
Cytotoxin and helminthotoxin with low-efficiency ribonuclease activity. Possesses a wide variety of biological activities. Exhibits antibacterial activity, including cytoplasmic membrane depolarization of preferentially Gram-negative, but also Gram-positive strains. Promotes E.coli outer membrane detachment, alteration of the overall cell shape and partial loss of cell content
Specific Function
Endonuclease activity
Gene Name
RNASE3
Uniprot ID
P12724
Uniprot Name
Eosinophil cationic protein
Molecular Weight
18385.145 Da
References
  1. Horiguchi T, Tachikawa S, Kasahara J, Doi M, Shiga M: Effects of pranlukast hydrate on serum eosinophil cationic protein levels in patients with adult bronchial asthma. Arzneimittelforschung. 1999 Jan;49(1):35-7. [Article]
  2. Ishioka S, Hozawa S, Haruta Y, Hiyama K, Maeda A, Yamakido M: Pranlukast, a cysteinyl leukotriene antagonist, reduces serum eosinophil cationic protein levels in patients with asthma. Hiroshima J Med Sci. 1999 Dec;48(4):105-10. [Article]
  3. Obase Y, Shimoda T, Tomari S, Mitsuta K, Fukushima C, Kawano T, Matsuse H, Kohno S: Effects of pranlukast on aspirin-induced bronchoconstriction: differences in chemical mediators between aspirin-intolerant and tolerant asthmatic patients. Ann Allergy Asthma Immunol. 2001 Jul;87(1):74-9. [Article]
  4. Kanazawa H, Yoshikawa T, Hirata K, Yoshikawa J: Effects of pranlukast administration on vascular endothelial growth factor levels in asthmatic patients. Chest. 2004 May;125(5):1700-5. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Other/unknown
General Function
NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and RelB-p50 complexes are transcriptional activators. The NF-kappa-B p50-p50 homodimer is a transcriptional repressor, but can act as a transcriptional activator when associated with BCL3. NFKB1 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p105 and generation of p50 by a cotranslational processing. The proteasome-mediated process ensures the production of both p50 and p105 and preserves their independent function, although processing of NFKB1/p105 also appears to occur post-translationally. p50 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. In a complex with MAP3K8, NFKB1/p105 represses MAP3K8-induced MAPK signaling; active MAP3K8 is released by proteasome-dependent degradation of NFKB1/p105
Specific Function
Actinin binding
Gene Name
NFKB1
Uniprot ID
P19838
Uniprot Name
Nuclear factor NF-kappa-B p105 subunit
Molecular Weight
105355.175 Da
References
  1. Tomari S, Matsuse H, Machida I, Kondo Y, Kawano T, Obase Y, Fukushima C, Shimoda T, Kohno S: Pranlukast, a cysteinyl leukotriene receptor 1 antagonist, attenuates allergen-specific tumour necrosis factor alpha production and nuclear factor kappa B nuclear translocation in peripheral blood monocytes from atopic asthmatics. Clin Exp Allergy. 2003 Jun;33(6):795-801. [Article]
  2. Ichiyama T, Hasegawa S, Umeda M, Terai K, Matsubara T, Furukawa S: Pranlukast inhibits NF-kappa B activation in human monocytes/macrophages and T cells. Clin Exp Allergy. 2003 Jun;33(6):802-7. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Other/unknown
General Function
Coats the epithelia of the intestines and other mucus membrane-containing organs to provide a protective, lubricating barrier against particles and infectious agents at mucosal surfaces (PubMed:17058067, PubMed:19432394, PubMed:33031746). Major constituent of the colon mucus, which is mainly formed by large polymeric networks of MUC2 secreted by goblet cells that cover the exposed surfaces of intestine (PubMed:19432394, PubMed:33031746). MUC2 networks form hydrogels that guard the underlying epithelium from pathogens and other hazardous matter entering from the outside world, while permitting nutrient absorption and gas exchange (PubMed:33031746, PubMed:36206754). Acts as a divalent copper chaperone that protects intestinal cells from copper toxicity and facilitates nutritional copper unptake into cells (PubMed:36206754). Binds both Cu(2+) and its reduced form, Cu(1+), at two juxtaposed binding sites: Cu(2+), once reduced to Cu(1+) by vitamin C (ascorbate) or other dietary antioxidants, transits to the other binding site (PubMed:36206754). MUC2-bound Cu(1+) is protected from oxidation in aerobic environments, and can be released for nutritional delivery to cells (PubMed:36206754). Mucin gels store antimicrobial molecules that participate in innate immunity (PubMed:33031746). Mucin glycoproteins also house and feed the microbiome, lubricate tissue surfaces, and may facilitate the removal of contaminants and waste products from the body (PubMed:33031746). Goblet cells synthesize two forms of MUC2 mucin that differ in branched chain O-glycosylation and the site of production in the colon: a (1) 'thick' mucus that wraps the microbiota to form fecal pellets is produced in the proximal, ascending colon (By similarity). 'Thick' mucus transits along the descending colon and is lubricated by a (2) 'thin' MUC2 mucus produced in the distal colon which adheres to the 'thick' mucus (By similarity)
Specific Function
Cupric ion binding
Gene Name
MUC2
Uniprot ID
Q02817
Uniprot Name
Mucin-2
Molecular Weight
550846.44 Da
References
  1. Ishinaga H, Takeuchi K, Kishioka C, Suzuki S, Basbaum C, Majima Y: Pranlukast inhibits NF-kappaB activation and MUC2 gene expression in cultured human epithelial cells. Pharmacology. 2005 Feb;73(2):89-96. Epub 2004 Oct 5. [Article]
  2. Bai CH, Song SY, Kim YD: The inhibitory effect of the leukotriene receptor antagonist on leukotriene D4-induced MUC2/5AC gene expression and mucin secretion in human airway epithelial cells. Auris Nasus Larynx. 2007 Jun;34(2):203-6. Epub 2007 Jan 12. [Article]
Kind
Protein group
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. In a non-canonical activation pathway, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes. The NF-kappa-B heterodimeric RelB-p52 complex is a transcriptional activator. The NF-kappa-B p52-p52 homodimer is a transcriptional repressor. NFKB2 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p100 and generation of p52 by a cotranslational processing. The proteasome-mediated process ensures the production of both p52 and p100 and preserves their independent function. p52 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. p52 and p100 are respectively the minor and major form; the processing of p100 being relatively poor. Isoform p49 is a subunit of the NF-kappa-B protein complex, which stimulates the HIV enhancer in synergy with p65. In concert with RELB, regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer
Specific Function
Dna-binding transcription activator activity, rna polymerase ii-specific

Components:
References
  1. Ichiyama T, Hasegawa S, Umeda M, Terai K, Matsubara T, Furukawa S: Pranlukast inhibits NF-kappa B activation in human monocytes/macrophages and T cells. Clin Exp Allergy. 2003 Jun;33(6):802-7. [Article]

Enzymes

Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
Curator comments
Data supporting this enzyme action are limited to the findings of 1 in vitro study.
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids and steroids (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:15766564, PubMed:19965576, PubMed:7574697, PubMed:9866708). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Exhibits low catalytic activity for the formation of catechol estrogens from 17beta-estradiol (E2) and estrone (E1), namely 2-hydroxy E1 and E2 (PubMed:12865317). Catalyzes bisallylic hydroxylation and hydroxylation with double-bond migration of polyunsaturated fatty acids (PUFA) (PubMed:9435160, PubMed:9866708). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan (PubMed:25994031)
Specific Function
(r)-limonene 6-monooxygenase activity
Gene Name
CYP2C9
Uniprot ID
P11712
Uniprot Name
Cytochrome P450 2C9
Molecular Weight
55627.365 Da
References
  1. Liu KH, Lee YM, Shon JH, Kim MJ, Lee SS, Yoon YR, Cha IJ, Shin JG: Potential of pranlukast and zafirlukast in the inhibition of human liver cytochrome P450 enzymes. Xenobiotica. 2004 May;34(5):429-38. doi: 10.1080/00498250410001691253 . [Article]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981)
Specific Function
1,8-cineole 2-exo-monooxygenase activity
Gene Name
CYP3A4
Uniprot ID
P08684
Uniprot Name
Cytochrome P450 3A4
Molecular Weight
57342.67 Da
References
  1. Nakade S, Yamauchi A, Komaba J, Ohno T, Kitagawa J, Honda N, Hasegawa C, Yoneda K, Kodama Y, Yasuda K, Azuma J, Miyata Y: Effect of clarithromycin on the pharmacokinetics of pranlukast in healthy volunteers. Drug Metab Pharmacokinet. 2008;23(6):428-33. [Article]

Transporters

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
ATP-dependent transporter of the ATP-binding cassette (ABC) family that binds and hydrolyzes ATP to enable active transport of various substrates including many drugs, toxicants and endogenous compound across cell membranes. Transports a wide variety of conjugated organic anions such as sulfate-, glucuronide- and glutathione (GSH)-conjugates of endo- and xenobiotics substrates (PubMed:10220572, PubMed:10421658, PubMed:11500505, PubMed:16332456). Mediates hepatobiliary excretion of mono- and bis-glucuronidated bilirubin molecules and therefore play an important role in bilirubin detoxification (PubMed:10421658). Mediates also hepatobiliary excretion of others glucuronide conjugates such as 17beta-estradiol 17-glucosiduronic acid and leukotriene C4 (PubMed:11500505). Transports sulfated bile salt such as taurolithocholate sulfate (PubMed:16332456). Transports various anticancer drugs, such as anthracycline, vinca alkaloid and methotrexate and HIV-drugs such as protease inhibitors (PubMed:10220572, PubMed:11500505, PubMed:12441801). Confers resistance to several anti-cancer drugs including cisplatin, doxorubicin, epirubicin, methotrexate, etoposide and vincristine (PubMed:10220572, PubMed:11500505)
Specific Function
Abc-type glutathione s-conjugate transporter activity
Gene Name
ABCC2
Uniprot ID
Q92887
Uniprot Name
ATP-binding cassette sub-family C member 2
Molecular Weight
174205.64 Da
References
  1. Horikawa M, Kato Y, Tyson CA, Sugiyama Y: The potential for an interaction between MRP2 (ABCC2) and various therapeutic agents: probenecid as a candidate inhibitor of the biliary excretion of irinotecan metabolites. Drug Metab Pharmacokinet. 2002;17(1):23-33. [Article]

Drug created at July 17, 2007 12:39 / Updated at June 12, 2021 10:52