Topiroxostat
Explore a selection of our essential drug information below, or:
Identification
- Generic Name
- Topiroxostat
- DrugBank Accession Number
- DB01685
- Background
Topiroxostat is a selective xanthine oxidase inhibitor developed for treatment and management of hyperuricemia and gout. Xanthine oxidase, or xanthine oxidoreductase (XOR), regulates purine metabolism, and inhibition of the enzyme results in efficacious reduction of serum urate levels. Xanthine oxidase inhibitors are classified into two groups; purine analogs such as Allopurinol and Oxypurinol, and non-purine agents which includes topiroxostat. While Allopurinol is considered a first-line therapy in treating hyperuricemic conditions, it is often associated with side effects and ineffective in reducing uric acid levels under recommended dosing regimens. Renal complications are major comorbidities that limit the Allopurinol therapy as dose reductions are recommended. Topiroxostat and its metabolites are shown to be unaffected by renal complications, thus may be effective in patients with chronic kidney diseases 2. Approved for therapeutic use in Japan since 2013, topiroxostat is marketed under the name Topiloric and Uriadec and is orally administered twice daily.
- Type
- Small Molecule
- Groups
- Experimental
- Structure
- Weight
- Average: 248.2428
Monoisotopic: 248.081044286 - Chemical Formula
- C13H8N6
- Synonyms
- 4-(5-(pyridin-4-yl)-1H-1,2,4-triazol-3-yl)pyridine-2-carbonitrile
- Topiroxostat
- External IDs
- FYX-051
Pharmacology
- Indication
Indicated for the treatment of gout and hyperurcemia in Japan.
Reduce drug development failure ratesBuild, train, & validate machine-learning modelswith evidence-based and structured datasets.Build, train, & validate predictive machine-learning models with structured datasets.- Contraindications & Blackbox Warnings
- Prevent Adverse Drug Events TodayTap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.Avoid life-threatening adverse drug events with our Clinical API
- Pharmacodynamics
Topiroxostat reduces the synthesis of uric acid by competitively inhibiting xanthine oxidase in a selective and time-dependent manner 1. It serves to reduce the concentration of insoluble urates and uric acid in tissues, plasma and urine. Topiroxostat is not reported to cause QT prolongation 4.
- Mechanism of action
Uric acid synthesis depends on the action of xanthine oxidase activity in the conversion of hypoxanthine to xanthine, followed by the conversion of xanthine to uric acid. Xanthine oxidase consists of a molybdenum ion as cofactor in the active center that has different redox states upon substrate binding 10. When a substrate such as hypoxanthine or xanthine binds, xanthine oxidase hydroxylates it and molybdenum ion is reduced from hexavalent, Mo(VI), to tetravalent form, Mo(IV). Molybdenum ion is reoxidized into hexavalent state once the hydroxylated substrate, xanthine or uric acid, dissociates from the active site. Topiroxostat is shown to interact with multiple amino acid residues of the solvent channel and additionally forms a reaction intermediate by covalent binding with molybdenum (IV) ion via an oxygen atom 2,10,5,6. It also forms hydrogen bonds with molybdenum (VI) ion, suggesting that it has multiple inhibition modes to xanthine oxidase 10. Enhanced binding interactions to xanthine oxidase achieves delayed dissociation of topiroxostat from the enzyme. 2-hydroxy-topiroxostat, the metabolite formed by primary hydroxylation of topiroxostat by xanthine oxidase, also causes time and concentration-dependent inhibition of the enzyme 1. Topiroxostat is shown to inhibit ATP-binding cassette transporter G2 (ABCG2) in vitro, which is a membrane protein responsible for recovering uric acid in the kidneys and secreting uric acid from the intestines 3,9.
Target Actions Organism AXanthine dehydrogenase/oxidase inhibitorHumans - Absorption
The time to reach peak plasma concentration of 229.9 ng/mL was 0.67 hour following a single oral dose of 20mg topiroxostat 10. The oral bioavailability in male rats was 69.6% after oral administration of a single dose of 1mg/kg 10.
- Volume of distribution
The mean ± SD apparent volume of distribution under fasted conditions is 1212.4 ± 1094.5 L. Under fed conditions, it is 704.6 ± 308.4 L. The distribution of 14C-topiroxostat (20, 200, and 2000 ng/mL) in human blood cells was 6.7% to 12.8% 10.
- Protein binding
The mean protein binding of radiolabeled (14C)-topiroxostat in human plasma is >97.5% at 20ng/mL, 98.8% at 200ng/mL, and 98.4% at 2000ng/mL. Binding to serum albumin is most predominant with 92.3-93.2%, and mean protein binding to α1-acid protein and γ-globulin is 12.3% to 16.8% and 34.7% to 40.4%, respectively 10.
- Metabolism
Topiroxostat is mainly inactivated by hepatic metabolism. 2-hydroxy topiroxostat is formed from primary hydroxylation of the drug by xanthine oxidase and still retains an inhibitory activity on the enzyme 1. Topiroxostat N-oxide is another major metabolite that can be detected in plasma and urine. It is determined that the N-oxide and hydroxide metabolites are pyridine N-oxide and pyridine 2 (or 6)-hydroxide, respectively 7. Topiroxostat is mainly inactivated by hepatic metabolism where it undergoes glucuronidation. The metabolism of topiroxostat to N1-and N2-glucuronide conjugates is mainly mediated by UGT1A1, 1A7, and 1A9, with UGT1A9 being the most predominant 10.
Hover over products below to view reaction partners
- Route of elimination
Urinary excretion and fecal excretion of radiolabeled topiroxostat are 30.4% and 40.9% of total dose of 1mg/kg administered to rats, respectively. Within 24 h after a single oral administration of 120mg of topiroxostat, the main metabolites of topiroxostat, N-oxide, N1-gluculonide, and N2-gluculonide, are excreted into urine about 4.8, 43.3, and 16.1 % of the dose, respectively. Unchanged topiroxostat and the hydroxide metabolite was 0.1% or less 7.
- Half-life
The mean half life of topiroxostat after a single oral dose of 20mg topiroxostat is 5 hours under fasting condition. The complex of molybdenum (IV)- topiroxostat has an approximate half life of 20.4 hours 10.
- Clearance
The apparent total body clearance rate is 89.5 L/h and the renal clearance rate is 17.4 mL/h following a single oral dose of 20mg topiroxostat 10.
- Adverse Effects
- Improve decision support & research outcomesWith structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!Improve decision support & research outcomes with our structured adverse effects data.
- Toxicity
Topiroxostat is not reported to be carcinogenic, genotoxic, or teratogenic 10. Some reported adverse events of topiroxostat therapy include nasopharyngitis, pain in extremity, elevated alanine aminotransferase (ALT), decreased white blood cell count, eczema and gout arthritis. The no-observed-adverse-effect-level (NOAEL) was determined to be ≥300 mg/kg/day in a study of once-daily, 52-week oral administration of 0/10/30/100 mg/kg/day topiroxostat in monkeys 10.
- Pathways
- Not Available
- Pharmacogenomic Effects/ADRs
- Not Available
Interactions
- Drug Interactions
- This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
Drug Interaction Integrate drug-drug
interactions in your softwareAbacavir Abacavir may decrease the excretion rate of Topiroxostat which could result in a higher serum level. Abemaciclib The serum concentration of Abemaciclib can be increased when it is combined with Topiroxostat. Abrocitinib The metabolism of Abrocitinib can be decreased when combined with Topiroxostat. Acalabrutinib The serum concentration of Acalabrutinib can be increased when it is combined with Topiroxostat. Acamprosate The excretion of Acamprosate can be decreased when combined with Topiroxostat. - Food Interactions
- Not Available
Products
- Drug product information from 10+ global regionsOur datasets provide approved product information including:dosage, form, labeller, route of administration, and marketing period.Access drug product information from over 10 global regions.
- International/Other Brands
- Topiloric (Fujiyakuhin Co.) / Uriadec (Sanwa Kagaku Kenkyusho Co.)
Categories
- Drug Categories
- BCRP/ABCG2 Inhibitors
- Cytochrome P-450 CYP2C19 Inhibitors
- Cytochrome P-450 CYP2C19 inhibitors (strength unknown)
- Cytochrome P-450 CYP2C8 Inhibitors
- Cytochrome P-450 CYP2C8 Inhibitors (moderate)
- Cytochrome P-450 CYP2C9 Inhibitors
- Cytochrome P-450 CYP2C9 Inhibitors (strength unknown)
- Cytochrome P-450 CYP3A Inhibitors
- Cytochrome P-450 CYP3A4 Inhibitors
- Cytochrome P-450 CYP3A4 Inhibitors (strength unknown)
- Cytochrome P-450 Enzyme Inhibitors
- Drugs that are Mainly Renally Excreted
- Enzyme Inhibitors
- OAT1/SLC22A6 inhibitors
- OAT3/SLC22A8 Inhibitors
- UGT1A9 Substrates
- Chemical TaxonomyProvided by Classyfire
- Description
- This compound belongs to the class of organic compounds known as pyridyl-1,2,4-triazoles. These are organic compounds containing a pyridine ring attached to a 1,2,4-triazole ring.
- Kingdom
- Organic compounds
- Super Class
- Organoheterocyclic compounds
- Class
- Pyridines and derivatives
- Sub Class
- Pyridyltriazoles
- Direct Parent
- Pyridyl-1,2,4-triazoles
- Alternative Parents
- Triazoles / Heteroaromatic compounds / Nitriles / Azacyclic compounds / Organopnictogen compounds / Hydrocarbon derivatives
- Substituents
- 1,2,4-triazole / Aromatic heteromonocyclic compound / Azacycle / Azole / Carbonitrile / Heteroaromatic compound / Hydrocarbon derivative / Nitrile / Organic nitrogen compound / Organonitrogen compound
- Molecular Framework
- Aromatic heteromonocyclic compounds
- External Descriptors
- Not Available
- Affected organisms
- Not Available
Chemical Identifiers
- UNII
- 0J877412JV
- CAS number
- 577778-58-6
- InChI Key
- UBVZQGOVTLIHLH-UHFFFAOYSA-N
- InChI
- InChI=1S/C13H8N6/c14-8-11-7-10(3-6-16-11)13-17-12(18-19-13)9-1-4-15-5-2-9/h1-7H,(H,17,18,19)
- IUPAC Name
- 4-[5-(pyridin-4-yl)-1H-1,2,4-triazol-3-yl]pyridine-2-carbonitrile
- SMILES
- N#CC1=NC=CC(=C1)C1=NNC(=N1)C1=CC=NC=C1
References
- General References
- Matsumoto K, Okamoto K, Ashizawa N, Nishino T: FYX-051: a novel and potent hybrid-type inhibitor of xanthine oxidoreductase. J Pharmacol Exp Ther. 2011 Jan;336(1):95-103. doi: 10.1124/jpet.110.174540. Epub 2010 Oct 15. [Article]
- Hosoya T, Ohno I, Nomura S, Hisatome I, Uchida S, Fujimori S, Yamamoto T, Hara S: Effects of topiroxostat on the serum urate levels and urinary albumin excretion in hyperuricemic stage 3 chronic kidney disease patients with or without gout. Clin Exp Nephrol. 2014 Dec;18(6):876-84. doi: 10.1007/s10157-014-0935-8. Epub 2014 Jan 22. [Article]
- Nishino T, Okamoto K: Mechanistic insights into xanthine oxidoreductase from development studies of candidate drugs to treat hyperuricemia and gout. J Biol Inorg Chem. 2015 Mar;20(2):195-207. doi: 10.1007/s00775-014-1210-x. Epub 2014 Dec 12. [Article]
- Sugiyama A, Hashimoto H, Nakamura Y, Fujita T, Kumagai Y: QT/QTc study conducted in Japanese adult healthy subjects: a novel xanthine oxidase inhibitor topiroxostat was not associated with QT prolongation. J Clin Pharmacol. 2014 Apr;54(4):446-52. doi: 10.1002/jcph.226. Epub 2013 Nov 22. [Article]
- Okamoto K, Eger BT, Nishino T, Kondo S, Pai EF, Nishino T: An extremely potent inhibitor of xanthine oxidoreductase. Crystal structure of the enzyme-inhibitor complex and mechanism of inhibition. J Biol Chem. 2003 Jan 17;278(3):1848-55. Epub 2002 Nov 5. [Article]
- Okamoto K, Matsumoto K, Hille R, Eger BT, Pai EF, Nishino T: The crystal structure of xanthine oxidoreductase during catalysis: implications for reaction mechanism and enzyme inhibition. Proc Natl Acad Sci U S A. 2004 May 25;101(21):7931-6. Epub 2004 May 17. [Article]
- Nakazawa T, Miyata K, Omura K, Iwanaga T, Nagata O: Metabolic profile of FYX-051 (4-(5-pyridin-4-yl-1h-[1,2,4]triazol-3-yl)pyridine-2-carbonitrile) in the rat, dog, monkey, and human: identification of N-glucuronides and N-glucosides. Drug Metab Dispos. 2006 Nov;34(11):1880-6. Epub 2006 Aug 16. [Article]
- Omura K, Nakazawa T, Sato T, Iwanaga T, Nagata O: Characterization of N-glucuronidation of 4-(5-pyridin-4-yl-1H-[1,2,4]triazol-3-yl) pyridine-2-carbonitrile (FYX-051): a new xanthine oxidoreductase inhibitor. Drug Metab Dispos. 2007 Dec;35(12):2143-8. Epub 2007 Aug 30. [Article]
- Miyata H, Takada T, Toyoda Y, Matsuo H, Ichida K, Suzuki H: Identification of Febuxostat as a New Strong ABCG2 Inhibitor: Potential Applications and Risks in Clinical Situations. Front Pharmacol. 2016 Dec 27;7:518. doi: 10.3389/fphar.2016.00518. eCollection 2016. [Article]
- Pharmaceuticals and Medical Devices Agency (PMDA): Topiroxostat review [Link]
- External Links
- PubChem Compound
- 5288320
- PubChem Substance
- 46508374
- ChemSpider
- 4450517
- BindingDB
- 50267750
- ChEMBL
- CHEMBL1078685
- ZINC
- ZINC000013536586
- PDBe Ligand
- FYX
- Wikipedia
- Topiroxostat
- PDB Entries
- 1v97
- MSDS
- Download (23.9 KB)
Clinical Trials
- Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package Phase Status Purpose Conditions Count Start Date Why Stopped 100+ additional columns Unlock 175K+ rows when you subscribe.View sample data2 Completed Basic Science Hyperuricemia 1 somestatus stop reason just information to hide 2 Completed Treatment Diabetic Nephropathy 1 somestatus stop reason just information to hide
Pharmacoeconomics
- Manufacturers
- Not Available
- Packagers
- Not Available
- Dosage Forms
- Not Available
- Prices
- Not Available
- Patents
- Not Available
Properties
- State
- Solid
- Experimental Properties
- Not Available
- Predicted Properties
Property Value Source Water Solubility 0.0779 mg/mL ALOGPS logP 1.47 ALOGPS logP 1.82 Chemaxon logS -3.5 ALOGPS pKa (Strongest Acidic) 8.75 Chemaxon pKa (Strongest Basic) 3.91 Chemaxon Physiological Charge 0 Chemaxon Hydrogen Acceptor Count 5 Chemaxon Hydrogen Donor Count 1 Chemaxon Polar Surface Area 91.14 Å2 Chemaxon Rotatable Bond Count 2 Chemaxon Refractivity 90.47 m3·mol-1 Chemaxon Polarizability 25.39 Å3 Chemaxon Number of Rings 3 Chemaxon Bioavailability 1 Chemaxon Rule of Five Yes Chemaxon Ghose Filter Yes Chemaxon Veber's Rule No Chemaxon MDDR-like Rule No Chemaxon - Predicted ADMET Features
Property Value Probability Human Intestinal Absorption + 1.0 Blood Brain Barrier + 0.9553 Caco-2 permeable + 0.5089 P-glycoprotein substrate Non-substrate 0.8142 P-glycoprotein inhibitor I Non-inhibitor 0.914 P-glycoprotein inhibitor II Non-inhibitor 0.9566 Renal organic cation transporter Non-inhibitor 0.743 CYP450 2C9 substrate Non-substrate 0.8646 CYP450 2D6 substrate Non-substrate 0.8876 CYP450 3A4 substrate Non-substrate 0.7258 CYP450 1A2 substrate Inhibitor 0.84 CYP450 2C9 inhibitor Non-inhibitor 0.8298 CYP450 2D6 inhibitor Non-inhibitor 0.9604 CYP450 2C19 inhibitor Non-inhibitor 0.7387 CYP450 3A4 inhibitor Inhibitor 0.5479 CYP450 inhibitory promiscuity High CYP Inhibitory Promiscuity 0.6341 Ames test AMES toxic 0.6839 Carcinogenicity Non-carcinogens 0.8822 Biodegradation Not ready biodegradable 1.0 Rat acute toxicity 1.8791 LD50, mol/kg Not applicable hERG inhibition (predictor I) Weak inhibitor 0.9411 hERG inhibition (predictor II) Non-inhibitor 0.9281
Spectra
- Mass Spec (NIST)
- Not Available
- Spectra
Spectrum Spectrum Type Splash Key Predicted GC-MS Spectrum - GC-MS Predicted GC-MS splash10-006t-0790000000-1c7572aeca7467120afa Predicted MS/MS Spectrum - 10V, Positive (Annotated) Predicted LC-MS/MS splash10-0002-0090000000-f15305003b9432e4a140 Predicted MS/MS Spectrum - 10V, Negative (Annotated) Predicted LC-MS/MS splash10-0002-0090000000-4238be1fee0092f9d560 Predicted MS/MS Spectrum - 20V, Positive (Annotated) Predicted LC-MS/MS splash10-0002-0090000000-b5749ff840be3eb05866 Predicted MS/MS Spectrum - 20V, Negative (Annotated) Predicted LC-MS/MS splash10-0002-0090000000-cb335f6b27ab482ab074 Predicted MS/MS Spectrum - 40V, Negative (Annotated) Predicted LC-MS/MS splash10-0a4i-0390000000-5581bd044894a3047c4e Predicted MS/MS Spectrum - 40V, Positive (Annotated) Predicted LC-MS/MS splash10-0aba-1790000000-050d4a14e8a71a11fe3e Predicted 1H NMR Spectrum 1D NMR Not Applicable Predicted 13C NMR Spectrum 1D NMR Not Applicable - Chromatographic Properties
Collision Cross Sections (CCS)
Adduct CCS Value (Å2) Source type Source [M-H]- 171.1738322 predictedDarkChem Lite v0.1.0 [M-H]- 156.19629 predictedDeepCCS 1.0 (2019) [M+H]+ 171.9275322 predictedDarkChem Lite v0.1.0 [M+H]+ 158.57237 predictedDeepCCS 1.0 (2019) [M+Na]+ 171.6319322 predictedDarkChem Lite v0.1.0 [M+Na]+ 164.64745 predictedDeepCCS 1.0 (2019)
Targets
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Inhibitor
- General Function
- Key enzyme in purine degradation. Catalyzes the oxidation of hypoxanthine to xanthine. Catalyzes the oxidation of xanthine to uric acid. Contributes to the generation of reactive oxygen species. Has also low oxidase activity towards aldehydes (in vitro)
- Specific Function
- 2 iron, 2 sulfur cluster binding
- Gene Name
- XDH
- Uniprot ID
- P47989
- Uniprot Name
- Xanthine dehydrogenase/oxidase
- Molecular Weight
- 146422.99 Da
References
- Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [Article]
- Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Enzymes
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Inhibitor
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Primarily catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) with a preference for the last double bond (PubMed:15766564, PubMed:19965576, PubMed:7574697). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes all trans-retinoic acid toward its 4-hydroxylated form (PubMed:11093772). Displays 16-alpha hydroxylase activity toward estrogen steroid hormones, 17beta-estradiol (E2) and estrone (E1) (PubMed:14559847). Plays a role in the oxidative metabolism of xenobiotics. It is the principal enzyme responsible for the metabolism of the anti-cancer drug paclitaxel (taxol) (PubMed:26427316)
- Specific Function
- Arachidonic acid epoxygenase activity
- Gene Name
- CYP2C8
- Uniprot ID
- P10632
- Uniprot Name
- Cytochrome P450 2C8
- Molecular Weight
- 55824.275 Da
References
- Pharmaceuticals and Medical Devices Agency (PMDA): Topiroxostat review [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Inhibitor
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids and steroids (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:15766564, PubMed:19965576, PubMed:7574697, PubMed:9866708). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Exhibits low catalytic activity for the formation of catechol estrogens from 17beta-estradiol (E2) and estrone (E1), namely 2-hydroxy E1 and E2 (PubMed:12865317). Catalyzes bisallylic hydroxylation and hydroxylation with double-bond migration of polyunsaturated fatty acids (PUFA) (PubMed:9435160, PubMed:9866708). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan (PubMed:25994031)
- Specific Function
- (r)-limonene 6-monooxygenase activity
- Gene Name
- CYP2C9
- Uniprot ID
- P11712
- Uniprot Name
- Cytochrome P450 2C9
- Molecular Weight
- 55627.365 Da
References
- Pharmaceuticals and Medical Devices Agency (PMDA): Topiroxostat review [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Inhibitor
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15041462, PubMed:15805301, PubMed:18577768, PubMed:19965576, PubMed:20972997). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15041462, PubMed:15805301, PubMed:18577768, PubMed:19965576, PubMed:20972997). Catalyzes the hydroxylation of carbon-hydrogen bonds. Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C15-alpha and C16-alpha positions (PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15805301). Displays different regioselectivities for polyunsaturated fatty acids (PUFA) hydroxylation (PubMed:15041462, PubMed:18577768). Catalyzes the epoxidation of double bonds of certain PUFA (PubMed:15041462, PubMed:19965576, PubMed:20972997). Converts arachidonic acid toward epoxyeicosatrienoic acid (EET) regioisomers, 8,9-, 11,12-, and 14,15-EET, that function as lipid mediators in the vascular system (PubMed:20972997). Displays an absolute stereoselectivity in the epoxidation of eicosapentaenoic acid (EPA) producing the 17(R),18(S) enantiomer (PubMed:15041462). May play an important role in all-trans retinoic acid biosynthesis in extrahepatic tissues. Catalyzes two successive oxidative transformation of all-trans retinol to all-trans retinal and then to the active form all-trans retinoic acid (PubMed:10681376). May also participate in eicosanoids metabolism by converting hydroperoxide species into oxo metabolites (lipoxygenase-like reaction, NADPH-independent) (PubMed:21068195)
- Specific Function
- Arachidonic acid monooxygenase activity
- Gene Name
- CYP1A1
- Uniprot ID
- P04798
- Uniprot Name
- Cytochrome P450 1A1
- Molecular Weight
- 58164.815 Da
References
- Pharmaceuticals and Medical Devices Agency (PMDA): Topiroxostat review [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Inhibitor
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981)
- Specific Function
- 1,8-cineole 2-exo-monooxygenase activity
- Gene Name
- CYP3A4
- Uniprot ID
- P08684
- Uniprot Name
- Cytochrome P450 3A4
- Molecular Weight
- 57342.67 Da
References
- Pharmaceuticals and Medical Devices Agency (PMDA): Topiroxostat review [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Inhibitor
- Curator comments
- Current data supporting this enzyme inhibition is limited.
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of polyunsaturated fatty acids (PUFA) (PubMed:18577768, PubMed:19965576, PubMed:20972997). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18577768, PubMed:19965576, PubMed:20972997). Catalyzes the hydroxylation of carbon-hydrogen bonds. Hydroxylates PUFA specifically at the omega-1 position (PubMed:18577768). Catalyzes the epoxidation of double bonds of PUFA (PubMed:19965576, PubMed:20972997). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine. Hydroxylates fenbendazole at the 4' position (PubMed:23959307)
- Specific Function
- (r)-limonene 6-monooxygenase activity
- Gene Name
- CYP2C19
- Uniprot ID
- P33261
- Uniprot Name
- Cytochrome P450 2C19
- Molecular Weight
- 55944.565 Da
References
- Pharmaceuticals and Medical Devices Agency (PMDA): Topiroxostat review [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Substrate
- General Function
- UDP-glucuronosyltransferase (UGT) that catalyzes phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase the metabolite's water solubility, thereby facilitating excretion into either the urine or bile (PubMed:12181437, PubMed:15470161, PubMed:15472229, PubMed:18004212, PubMed:18052087, PubMed:18674515, PubMed:19545173). Essential for the elimination and detoxification of drugs, xenobiotics and endogenous compounds (PubMed:12181437, PubMed:18004212). Catalyzes the glucuronidation of endogenous estrogen hormones such as estradiol and estrone (PubMed:15472229). Also catalyzes the glucuronidation of the isoflavones genistein, daidzein, glycitein, formononetin, biochanin A and prunetin, which are phytoestrogens with anticancer and cardiovascular properties (PubMed:18052087, PubMed:19545173). Involved in the glucuronidation of the AGTR1 angiotensin receptor antagonist caderastan, a drug which can inhibit the effect of angiotensin II (PubMed:18674515). Involved in the biotransformation of 7-ethyl-10-hydroxycamptothecin (SN-38), the pharmacologically active metabolite of the anticancer drug irinotecan (PubMed:12181437, PubMed:20610558). Also metabolizes mycophenolate, an immunosuppressive agent (PubMed:15470161, PubMed:18004212)
- Specific Function
- Enzyme binding
- Gene Name
- UGT1A9
- Uniprot ID
- O60656
- Uniprot Name
- UDP-glucuronosyltransferase 1A9
- Molecular Weight
- 59940.495 Da
References
- Omura K, Nakazawa T, Sato T, Iwanaga T, Nagata O: Characterization of N-glucuronidation of 4-(5-pyridin-4-yl-1H-[1,2,4]triazol-3-yl) pyridine-2-carbonitrile (FYX-051): a new xanthine oxidoreductase inhibitor. Drug Metab Dispos. 2007 Dec;35(12):2143-8. Epub 2007 Aug 30. [Article]
Carriers
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Binder
- General Function
- Binds water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs (Probable). Its main function is the regulation of the colloidal osmotic pressure of blood (Probable). Major zinc transporter in plasma, typically binds about 80% of all plasma zinc (PubMed:19021548). Major calcium and magnesium transporter in plasma, binds approximately 45% of circulating calcium and magnesium in plasma (By similarity). Potentially has more than two calcium-binding sites and might additionally bind calcium in a non-specific manner (By similarity). The shared binding site between zinc and calcium at residue Asp-273 suggests a crosstalk between zinc and calcium transport in the blood (By similarity). The rank order of affinity is zinc > calcium > magnesium (By similarity). Binds to the bacterial siderophore enterobactin and inhibits enterobactin-mediated iron uptake of E.coli from ferric transferrin, and may thereby limit the utilization of iron and growth of enteric bacteria such as E.coli (PubMed:6234017). Does not prevent iron uptake by the bacterial siderophore aerobactin (PubMed:6234017)
- Specific Function
- Antioxidant activity
- Gene Name
- ALB
- Uniprot ID
- P02768
- Uniprot Name
- Albumin
- Molecular Weight
- 69365.94 Da
References
- Pharmaceuticals and Medical Devices Agency (PMDA): Topiroxostat review [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Binder
- General Function
- Functions as a transport protein in the blood stream. Binds various ligands in the interior of its beta-barrel domain. Also binds synthetic drugs and influences their distribution and availability in the body. Appears to function in modulating the activity of the immune system during the acute-phase reaction
- Specific Function
- Not Available
- Gene Name
- ORM1
- Uniprot ID
- P02763
- Uniprot Name
- Alpha-1-acid glycoprotein 1
- Molecular Weight
- 23539.43 Da
References
- Pharmaceuticals and Medical Devices Agency (PMDA): Topiroxostat review [Link]
Transporters
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Inhibitor
- General Function
- Broad substrate specificity ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes a wide variety of physiological compounds, dietary toxins and xenobiotics from cells (PubMed:11306452, PubMed:12958161, PubMed:19506252, PubMed:20705604, PubMed:28554189, PubMed:30405239, PubMed:31003562). Involved in porphyrin homeostasis, mediating the export of protoporphyrin IX (PPIX) from both mitochondria to cytosol and cytosol to extracellular space, it also functions in the cellular export of heme (PubMed:20705604, PubMed:23189181). Also mediates the efflux of sphingosine-1-P from cells (PubMed:20110355). Acts as a urate exporter functioning in both renal and extrarenal urate excretion (PubMed:19506252, PubMed:20368174, PubMed:22132962, PubMed:31003562, PubMed:36749388). In kidney, it also functions as a physiological exporter of the uremic toxin indoxyl sulfate (By similarity). Also involved in the excretion of steroids like estrone 3-sulfate/E1S, 3beta-sulfooxy-androst-5-en-17-one/DHEAS, and other sulfate conjugates (PubMed:12682043, PubMed:28554189, PubMed:30405239). Mediates the secretion of the riboflavin and biotin vitamins into milk (By similarity). Extrudes pheophorbide a, a phototoxic porphyrin catabolite of chlorophyll, reducing its bioavailability (By similarity). Plays an important role in the exclusion of xenobiotics from the brain (Probable). It confers to cells a resistance to multiple drugs and other xenobiotics including mitoxantrone, pheophorbide, camptothecin, methotrexate, azidothymidine, and the anthracyclines daunorubicin and doxorubicin, through the control of their efflux (PubMed:11306452, PubMed:12477054, PubMed:15670731, PubMed:18056989, PubMed:31254042). In placenta, it limits the penetration of drugs from the maternal plasma into the fetus (By similarity). May play a role in early stem cell self-renewal by blocking differentiation (By similarity)
- Specific Function
- Abc-type xenobiotic transporter activity
- Gene Name
- ABCG2
- Uniprot ID
- Q9UNQ0
- Uniprot Name
- Broad substrate specificity ATP-binding cassette transporter ABCG2
- Molecular Weight
- 72313.47 Da
References
- Miyata H, Takada T, Toyoda Y, Matsuo H, Ichida K, Suzuki H: Identification of Febuxostat as a New Strong ABCG2 Inhibitor: Potential Applications and Risks in Clinical Situations. Front Pharmacol. 2016 Dec 27;7:518. doi: 10.3389/fphar.2016.00518. eCollection 2016. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Inhibitor
- General Function
- Functions as an organic anion/dicarboxylate exchanger that couples organic anion uptake indirectly to the sodium gradient (PubMed:14586168, PubMed:15644426, PubMed:15846473, PubMed:16455804, PubMed:31553721). Transports organic anions such as estrone 3-sulfate (E1S) and urate in exchange for dicarboxylates such as glutarate or ketoglutarate (2-oxoglutarate) (PubMed:14586168, PubMed:15846473, PubMed:15864504, PubMed:22108572, PubMed:23832370). Plays an important role in the excretion of endogenous and exogenous organic anions, especially from the kidney and the brain (PubMed:11306713, PubMed:14586168, PubMed:15846473). E1S transport is pH- and chloride-dependent and may also involve E1S/cGMP exchange (PubMed:26377792). Responsible for the transport of prostaglandin E2 (PGE2) and prostaglandin F2(alpha) (PGF2(alpha)) in the basolateral side of the renal tubule (PubMed:11907186). Involved in the transport of neuroactive tryptophan metabolites kynurenate and xanthurenate (PubMed:22108572, PubMed:23832370). Functions as a biopterin transporters involved in the uptake and the secretion of coenzymes tetrahydrobiopterin (BH4), dihydrobiopterin (BH2) and sepiapterin to urine, thereby determining baseline levels of blood biopterins (PubMed:28534121). May be involved in the basolateral transport of steviol, a metabolite of the popular sugar substitute stevioside (PubMed:15644426). May participate in the detoxification/ renal excretion of drugs and xenobiotics, such as the histamine H(2)-receptor antagonists fexofenadine and cimetidine, the antibiotic benzylpenicillin (PCG), the anionic herbicide 2,4-dichloro-phenoxyacetate (2,4-D), the diagnostic agent p-aminohippurate (PAH), the antiviral acyclovir (ACV), and the mycotoxin ochratoxin (OTA), by transporting these exogenous organic anions across the cell membrane in exchange for dicarboxylates such as 2-oxoglutarate (PubMed:11669456, PubMed:15846473, PubMed:16455804). Contributes to the renal uptake of potent uremic toxins (indoxyl sulfate (IS), indole acetate (IA), hippurate/N-benzoylglycine (HA) and 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF)), pravastatin, PCG, E1S and dehydroepiandrosterone sulfate (DHEAS), and is partly involved in the renal uptake of temocaprilat (an angiotensin-converting enzyme (ACE) inhibitor) (PubMed:14675047). May contribute to the release of cortisol in the adrenals (PubMed:15864504). Involved in one of the detoxification systems on the choroid plexus (CP), removes substrates such as E1S or taurocholate (TC), PCG, 2,4-D and PAH, from the cerebrospinal fluid (CSF) to the blood for eventual excretion in urine and bile (By similarity). Also contributes to the uptake of several other organic compounds such as the prostanoids prostaglandin E(2) and prostaglandin F(2-alpha), L-carnitine, and the therapeutic drugs allopurinol, 6-mercaptopurine (6-MP) and 5-fluorouracil (5-FU) (By similarity). Mediates the transport of PAH, PCG, and the statins pravastatin and pitavastatin, from the cerebrum into the blood circulation across the blood-brain barrier (BBB). In summary, plays a role in the efflux of drugs and xenobiotics, helping reduce their undesired toxicological effects on the body (By similarity)
- Specific Function
- Organic anion transmembrane transporter activity
- Gene Name
- SLC22A8
- Uniprot ID
- Q8TCC7
- Uniprot Name
- Organic anion transporter 3
- Molecular Weight
- 59855.585 Da
References
- Pharmaceuticals and Medical Devices Agency (PMDA): Topiroxostat review [Link]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Inhibitor
- General Function
- Secondary active transporter that functions as a Na(+)-independent organic anion (OA)/dicarboxylate antiporter where the uptake of one molecule of OA into the cell is coupled with an efflux of one molecule of intracellular dicarboxylate such as 2-oxoglutarate or glutarate (PubMed:11669456, PubMed:11907186, PubMed:14675047, PubMed:22108572, PubMed:23832370, PubMed:28534121, PubMed:9950961). Mediates the uptake of OA across the basolateral side of proximal tubule epithelial cells, thereby contributing to the renal elimination of endogenous OA from the systemic circulation into the urine (PubMed:9887087). Functions as a biopterin transporters involved in the uptake and the secretion of coenzymes tetrahydrobiopterin (BH4), dihydrobiopterin (BH2) and sepiapterin to urine, thereby determining baseline levels of blood biopterins (PubMed:28534121). Transports prostaglandin E2 (PGE2) and prostaglandin F2-alpha (PGF2-alpha) and may contribute to their renal excretion (PubMed:11907186). Also mediates the uptake of cyclic nucleotides such as cAMP and cGMP (PubMed:26377792). Involved in the transport of neuroactive tryptophan metabolites kynurenate (KYNA) and xanthurenate (XA) and may contribute to their secretion from the brain (PubMed:22108572, PubMed:23832370). May transport glutamate (PubMed:26377792). Also involved in the disposition of uremic toxins and potentially toxic xenobiotics by the renal organic anion secretory pathway, helping reduce their undesired toxicological effects on the body (PubMed:11669456, PubMed:14675047). Uremic toxins include the indoxyl sulfate (IS), hippurate/N-benzoylglycine (HA), indole acetate (IA), 3-carboxy-4- methyl-5-propyl-2-furanpropionate (CMPF) and urate (PubMed:14675047, PubMed:26377792). Xenobiotics include the mycotoxin ochratoxin (OTA) (PubMed:11669456). May also contribute to the transport of organic compounds in testes across the blood-testis-barrier (PubMed:35307651)
- Specific Function
- Alpha-ketoglutarate transmembrane transporter activity
- Gene Name
- SLC22A6
- Uniprot ID
- Q4U2R8
- Uniprot Name
- Solute carrier family 22 member 6
- Molecular Weight
- 61815.78 Da
References
- Pharmaceuticals and Medical Devices Agency (PMDA): Topiroxostat review [Link]
Drug created at June 13, 2005 13:24 / Updated at August 26, 2024 19:23