Talbutal
Identification
- Name
- Talbutal
- Accession Number
- DB00306
- Description
Talbutal, also called 5-allyl-5-sec-butylbarbituric acid, is a barbiturate with a short to intermediate duration of action. Talbutal is a schedule III drug in the U.S.
- Type
- Small Molecule
- Groups
- Approved, Illicit
- Structure
- Weight
- Average: 224.2563
Monoisotopic: 224.116092388 - Chemical Formula
- C11H16N2O3
- Synonyms
- (RS)-5-allyl-5-sec-butylpyrimidine-2,4,6(1H,3H,5H)-trione
- 5-allyl-5-sec-butylbarbituric acid
- sec-Butyl allyl barbituric acid
- Talbutal
- Talbutale
- Talbutalum
- External IDs
- HSDB 3397
- WIN 5095
Pharmacology
- Accelerate your drug discovery research with the industry’s only fully connected ADMET dataset, ideal for:Accelerate your drug discovery research with our fully connected ADMET dataset
- Indication
For use as a sedative and hypnotic.
- Contraindications & Blackbox Warnings
- Contraindications & Blackbox WarningsWith our commercial data, access important information on dangerous risks, contraindications, and adverse effects.Our Blackbox Warnings cover Risks, Contraindications, and Adverse Effects
- Pharmacodynamics
Talbutal is a short to intermediate-acting barbiturate that is a nonselective central nervous system (CNS) depressant. As with other barbiturates, talbutal is capable of producing all levels of CNS mood alteration from excitation to mild sedation, hypnosis, and deep coma. Barbiturates may also induce anesthesia at sufficiently high therapeutic doses.
- Mechanism of action
Talbutal binds to GABAA receptors at a distinct binding site associated with a Cl- ionopore of the receptor. Upon binding, talbutal increases the duration of time for which the Cl- ionopore is open, leading to prolonged inhibitory effect of GABA at the postsynaptic thalamic neuron.
Target Actions Organism AGamma-aminobutyric acid receptor subunit alpha-1 potentiatorHumans AGamma-aminobutyric acid receptor subunit alpha-2 potentiatorHumans AGamma-aminobutyric acid receptor subunit alpha-3 potentiatorHumans AGamma-aminobutyric acid receptor subunit alpha-4 potentiatorHumans AGamma-aminobutyric acid receptor subunit alpha-5 potentiatorHumans AGamma-aminobutyric acid receptor subunit alpha-6 potentiatorHumans UNeuronal acetylcholine receptor subunit alpha-4 antagonistHumans UNeuronal acetylcholine receptor subunit alpha-7 antagonistHumans UGlutamate receptor 2 antagonistHumans UGlutamate receptor ionotropic, kainate 2 antagonistHumans AGABA(A) Receptor positive allosteric modulatorHumans - Absorption
- Not Available
- Volume of distribution
- Not Available
- Protein binding
- Not Available
- Metabolism
- Not Available
- Route of elimination
- Not Available
- Half-life
- Not Available
- Clearance
- Not Available
- Adverse Effects
- Reduce medical errorsand improve treatment outcomes with our comprehensive & structured data on drug adverse effects.Reduce medical errors & improve treatment outcomes with our adverse effects data
- Toxicity
Acute barbiturate poisoning is associated with symptoms such as drowsiness, confusion, coma, respiratory depression, hypotension, and shock.
- Affected organisms
- Humans and other mammals
- Pathways
- Not Available
- Pharmacogenomic Effects/ADRs
- Not Available
Interactions
- Drug Interactions
- This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
Drug Interaction Integrate drug-drug
interactions in your softwareAcetazolamide The risk or severity of adverse effects can be increased when Talbutal is combined with Acetazolamide. Acetophenazine The risk or severity of adverse effects can be increased when Talbutal is combined with Acetophenazine. Aclidinium Talbutal may increase the central nervous system depressant (CNS depressant) activities of Aclidinium. Agomelatine The risk or severity of adverse effects can be increased when Talbutal is combined with Agomelatine. Alfentanil The risk or severity of adverse effects can be increased when Talbutal is combined with Alfentanil. Alimemazine The risk or severity of adverse effects can be increased when Talbutal is combined with Alimemazine. Alloin The therapeutic efficacy of Alloin can be decreased when used in combination with Talbutal. Almotriptan The risk or severity of adverse effects can be increased when Talbutal is combined with Almotriptan. Alosetron The risk or severity of adverse effects can be increased when Talbutal is combined with Alosetron. Alprazolam The risk or severity of adverse effects can be increased when Talbutal is combined with Alprazolam. Improve patient outcomesBuild effective decision support tools with the industry’s most comprehensive drug-drug interaction checker.Learn more - Food Interactions
- Not Available
Products
- Comprehensive & structured drug product infoFrom application numbers to product codes, connect different identifiers through our commercial datasets.Easily connect various identifiers back to our datasets
- International/Other Brands
- Lotusate (Sanofi Aventis)
Categories
- ATC Codes
- N05CA07 — Talbutal
- Drug Categories
- Chemical TaxonomyProvided by Classyfire
- Description
- This compound belongs to the class of organic compounds known as barbituric acid derivatives. These are compounds containing a perhydropyrimidine ring substituted at C-2, -4 and -6 by oxo groups.
- Kingdom
- Organic compounds
- Super Class
- Organoheterocyclic compounds
- Class
- Diazines
- Sub Class
- Pyrimidines and pyrimidine derivatives
- Direct Parent
- Barbituric acid derivatives
- Alternative Parents
- N-acyl ureas / Diazinanes / Dicarboximides / Azacyclic compounds / Organopnictogen compounds / Organonitrogen compounds / Organic oxides / Hydrocarbon derivatives / Carbonyl compounds
- Substituents
- 1,3-diazinane / Aliphatic heteromonocyclic compound / Azacycle / Barbiturate / Carbonic acid derivative / Carbonyl group / Carboxylic acid derivative / Dicarboximide / Hydrocarbon derivative / N-acyl urea
- Molecular Framework
- Aliphatic heteromonocyclic compounds
- External Descriptors
- Not Available
Chemical Identifiers
- UNII
- 4YIR8202AX
- CAS number
- 115-44-6
- InChI Key
- BJVVMKUXKQHWJK-UHFFFAOYSA-N
- InChI
- InChI=1S/C11H16N2O3/c1-4-6-11(7(3)5-2)8(14)12-10(16)13-9(11)15/h4,7H,1,5-6H2,2-3H3,(H2,12,13,14,15,16)
- IUPAC Name
- 5-(butan-2-yl)-5-(prop-2-en-1-yl)-1,3-diazinane-2,4,6-trione
- SMILES
- CCC(C)C1(CC=C)C(=O)NC(=O)NC1=O
References
- General References
- Not Available
- External Links
- KEGG Drug
- D06887
- PubChem Compound
- 8275
- PubChem Substance
- 46507821
- ChemSpider
- 7976
- 89810
- ChEBI
- 134923
- ChEMBL
- CHEMBL1200802
- Therapeutic Targets Database
- DAP000670
- PharmGKB
- PA164779051
- Wikipedia
- Talbutal
Clinical Trials
Pharmacoeconomics
- Manufacturers
- Sanofi aventis us llc
- Packagers
- Not Available
- Dosage Forms
- Not Available
- Prices
- Not Available
- Patents
- Not Available
Properties
- State
- Solid
- Experimental Properties
Property Value Source melting point (°C) 109 °C PhysProp water solubility 1810 mg/L at 25 °C MEYLAN,WM et al. (1996) logP 1.47 HANSCH,C ET AL. (1995) pKa 7.79 (at 25 °C) KORTUM,G ET AL (1961) - Predicted Properties
Property Value Source Water Solubility 2.46 mg/mL ALOGPS logP 1.87 ALOGPS logP 1.59 ChemAxon logS -2 ALOGPS pKa (Strongest Acidic) 8.48 ChemAxon Physiological Charge 0 ChemAxon Hydrogen Acceptor Count 3 ChemAxon Hydrogen Donor Count 2 ChemAxon Polar Surface Area 75.27 Å2 ChemAxon Rotatable Bond Count 4 ChemAxon Refractivity 58.05 m3·mol-1 ChemAxon Polarizability 22.48 Å3 ChemAxon Number of Rings 1 ChemAxon Bioavailability 1 ChemAxon Rule of Five Yes ChemAxon Ghose Filter Yes ChemAxon Veber's Rule No ChemAxon MDDR-like Rule No ChemAxon - Predicted ADMET Features
Property Value Probability Human Intestinal Absorption + 0.9272 Blood Brain Barrier + 0.984 Caco-2 permeable - 0.5931 P-glycoprotein substrate Substrate 0.6383 P-glycoprotein inhibitor I Non-inhibitor 0.5341 P-glycoprotein inhibitor II Non-inhibitor 0.9761 Renal organic cation transporter Non-inhibitor 0.9352 CYP450 2C9 substrate Non-substrate 0.7904 CYP450 2D6 substrate Non-substrate 0.9009 CYP450 3A4 substrate Non-substrate 0.7245 CYP450 1A2 substrate Non-inhibitor 0.8455 CYP450 2C9 inhibitor Non-inhibitor 0.8308 CYP450 2D6 inhibitor Non-inhibitor 0.9229 CYP450 2C19 inhibitor Non-inhibitor 0.7692 CYP450 3A4 inhibitor Non-inhibitor 0.8764 CYP450 inhibitory promiscuity Low CYP Inhibitory Promiscuity 0.9375 Ames test Non AMES toxic 0.6105 Carcinogenicity Non-carcinogens 0.8617 Biodegradation Not ready biodegradable 0.9918 Rat acute toxicity 3.5595 LD50, mol/kg Not applicable hERG inhibition (predictor I) Weak inhibitor 0.9879 hERG inhibition (predictor II) Non-inhibitor 0.9537
Spectra
- Mass Spec (NIST)
- Not Available
- Spectra
Spectrum Spectrum Type Splash Key GC-MS Spectrum - EI-B GC-MS splash10-00kf-9400000000-724aeaec6df65c3e5931 GC-MS Spectrum - CI-B GC-MS splash10-004i-0090000000-603a585be8f03eb2145e Predicted MS/MS Spectrum - 10V, Positive (Annotated) Predicted LC-MS/MS Not Available Predicted MS/MS Spectrum - 20V, Positive (Annotated) Predicted LC-MS/MS Not Available Predicted MS/MS Spectrum - 40V, Positive (Annotated) Predicted LC-MS/MS Not Available Predicted MS/MS Spectrum - 10V, Negative (Annotated) Predicted LC-MS/MS Not Available Predicted MS/MS Spectrum - 20V, Negative (Annotated) Predicted LC-MS/MS Not Available Predicted MS/MS Spectrum - 40V, Negative (Annotated) Predicted LC-MS/MS Not Available
Targets

- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Potentiator
- General Function
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function
- Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine...
- Gene Name
- GABRA1
- Uniprot ID
- P14867
- Uniprot Name
- Gamma-aminobutyric acid receptor subunit alpha-1
- Molecular Weight
- 51801.395 Da
References
- Whiting PJ: The GABAA receptor gene family: new opportunities for drug development. Curr Opin Drug Discov Devel. 2003 Sep;6(5):648-57. [PubMed:14579514]
- Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232]
- Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207]
- Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449]
- Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [PubMed:11752352]
- Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284]
- Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Potentiator
- General Function
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name
- GABRA2
- Uniprot ID
- P47869
- Uniprot Name
- Gamma-aminobutyric acid receptor subunit alpha-2
- Molecular Weight
- 51325.85 Da
References
- Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449]
- Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Potentiator
- General Function
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name
- GABRA3
- Uniprot ID
- P34903
- Uniprot Name
- Gamma-aminobutyric acid receptor subunit alpha-3
- Molecular Weight
- 55164.055 Da
References
- Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449]
- Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Potentiator
- General Function
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name
- GABRA4
- Uniprot ID
- P48169
- Uniprot Name
- Gamma-aminobutyric acid receptor subunit alpha-4
- Molecular Weight
- 61622.645 Da
References
- Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Potentiator
- General Function
- Transporter activity
- Specific Function
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name
- GABRA5
- Uniprot ID
- P31644
- Uniprot Name
- Gamma-aminobutyric acid receptor subunit alpha-5
- Molecular Weight
- 52145.645 Da
References
- Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449]
- Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Potentiator
- General Function
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name
- GABRA6
- Uniprot ID
- Q16445
- Uniprot Name
- Gamma-aminobutyric acid receptor subunit alpha-6
- Molecular Weight
- 51023.69 Da
References
- Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232]
- Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- Ligand-gated ion channel activity
- Specific Function
- After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeabl...
- Gene Name
- CHRNA4
- Uniprot ID
- P43681
- Uniprot Name
- Neuronal acetylcholine receptor subunit alpha-4
- Molecular Weight
- 69956.47 Da
References
- Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449]
- Arias HR, Bhumireddy P: Anesthetics as chemical tools to study the structure and function of nicotinic acetylcholine receptors. Curr Protein Pept Sci. 2005 Oct;6(5):451-72. [PubMed:16248797]
- Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- Toxic substance binding
- Specific Function
- After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The cha...
- Gene Name
- CHRNA7
- Uniprot ID
- P36544
- Uniprot Name
- Neuronal acetylcholine receptor subunit alpha-7
- Molecular Weight
- 56448.925 Da
References
- Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449]
- Arias HR, Bhumireddy P: Anesthetics as chemical tools to study the structure and function of nicotinic acetylcholine receptors. Curr Protein Pept Sci. 2005 Oct;6(5):451-72. [PubMed:16248797]
- Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- Ionotropic glutamate receptor activity
- Specific Function
- Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory ne...
- Gene Name
- GRIA2
- Uniprot ID
- P42262
- Uniprot Name
- Glutamate receptor 2
- Molecular Weight
- 98820.32 Da
References
- Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449]
- Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- Kainate selective glutamate receptor activity
- Specific Function
- Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a co...
- Gene Name
- GRIK2
- Uniprot ID
- Q13002
- Uniprot Name
- Glutamate receptor ionotropic, kainate 2
- Molecular Weight
- 102582.475 Da
References
- Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449]
- Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207]
- Kind
- Protein group
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Positive allosteric modulator
- General Function
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function
- Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine...
Components:
References
- ChEMBL Compound Report Card [Link]
Drug created on June 13, 2005 13:24 / Updated on February 21, 2021 18:50