Parthenolide
Star1
This drug entry is a stub and has not been fully annotated. It is scheduled to be annotated soon.
Explore a selection of our essential drug information below, or:
Identification
- Generic Name
- Parthenolide
- DrugBank Accession Number
- DB13063
- Background
Parthenolide has been used in trials studying the diagnostic of Allergic Contact Dermatitis.
- Type
- Small Molecule
- Groups
- Approved, Investigational
- Structure
- Weight
- Average: 248.3175
Monoisotopic: 248.141244506 - Chemical Formula
- C15H20O3
- Synonyms
- Not Available
Pharmacology
- Indication
Not Available
Reduce drug development failure ratesBuild, train, & validate machine-learning modelswith evidence-based and structured datasets.Build, train, & validate predictive machine-learning models with structured datasets.- Contraindications & Blackbox Warnings
- Prevent Adverse Drug Events TodayTap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.Avoid life-threatening adverse drug events with our Clinical API
- Pharmacodynamics
Not Available
- Mechanism of action
Target Actions Organism AProto-oncogene c-Rel inhibitorHumans AInhibitor of nuclear factor kappa-B kinase subunit beta inhibitorHumans ANuclear factor NF-kappa-B p105 subunit inhibitorHumans ANuclear factor NF-kappa-B p100 subunit inhibitorHumans ATranscription factor p65 inhibitorHumans - Absorption
Not Available
- Volume of distribution
Not Available
- Protein binding
Not Available
- Metabolism
- Not Available
- Route of elimination
Not Available
- Half-life
Not Available
- Clearance
Not Available
- Adverse Effects
- Improve decision support & research outcomesWith structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!Improve decision support & research outcomes with our structured adverse effects data.
- Toxicity
Not Available
- Pathways
- Not Available
- Pharmacogenomic Effects/ADRs
- Not Available
Interactions
- Drug Interactions
- This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.Not Available
- Food Interactions
- No interactions found.
Products
- Drug product information from 10+ global regionsOur datasets provide approved product information including:dosage, form, labeller, route of administration, and marketing period.Access drug product information from over 10 global regions.
- Mixture Products
Name Ingredients Dosage Route Labeller Marketing Start Marketing End Region Image T.R.U.E. Test Thin-Layer Rapid Use Patch Test Parthenolide (2 ug/48h) + 2,2'-Dibenzothiazyl disulfide (20 ug/48h) + 2-mercaptobenzothiazole (61 ug/48h) + 4-(Isopropylamino)diphenylamine (10 ug/48h) + Bacitracin (486 ug/48h) + Balsam of Peru (648 ug/48h) + Benzocaine (378 ug/48h) + Benzylparaben (162 ug/48h) + Bisphenol A diglycidyl ether (32 ug/48h) + Bromothalonil (4 ug/48h) + Bronopol (203 ug/48h) + Budesonide (0.8 ug/48h) + Butylparaben (162 ug/48h) + Chlorquinaldol (77 ug/48h) + Cinchocaine hydrochloride (66 ug/48h) + Cinnamaldehyde (41 ug/48h) + Cinnamyl alcohol (63 ug/48h) + Clioquinol (77 ug/48h) + Cobalt chloride hexahydrate (4 ug/48h) + Diazolidinylurea (446 ug/48h) + Potassium dichromate (15.7 ug/48h) + Dipentamethylenethiuram disulfide (5.5 ug/48h) + Diphenylguanidine (68 ug/48h) + Disperse Blue 106 (41 ug/48h) + Disulfiram (5.5 ug/48h) + Ditiocarb zinc (68 ug/48h) + Ethyl hydroxybenzoate (162 ug/48h) + Ethylenediamine (18 ug/48h) + Eugenol (41 ug/48h) + Evernia prunastri (81 ug/48h) + Formaldehyde (146 ug/48h) + Geraniol (81 ug/48h) + Hydrocortisone butyrate (16 ug/48h) + Hydroxycitronellal (63 ug/48h) + Imidurea (486 ug/48h) + Isoeugenol (17 ug/48h) + Lanolin alcohols (810 ug/48h) + Methylchloroisothiazolinone (3 ug/48h) + Methylparaben (162 ug/48h) + Morpholinylmercaptobenzothiazole (20 ug/48h) + N,N'-diphenyl-1,4-phenylenediamine (25 ug/48h) + N-Cyclohexyl-N'-phenyl-1,4-phenylenediamine (25 ug/48h) + Neomycin sulfate (486 ug/48h) + Nickel sulfate hexahydrate (36 ug/48h) + Propylparaben (162 ug/48h) + Quaternium-15 (81 ug/48h) + Rosin (972 ug/48h) + Sodium aurotiosulfate (23 ug/48h) + Tetracaine hydrochloride (66 ug/48h) + Tetramethylthiuram monosulfide (5.5 ug/48h) + Thimerosal (6 ug/48h) + Thiohexam (20 ug/48h) + Thiram (5.5 ug/48h) + Tixocortol pivalate (2 ug/48h) + Zinc dibutyldithiocarbamate (68 ug/48h) + alpha-Amyl cinnamaldehyde (17 ug/48h) + p-Phenylenediamine (65 ug/48h) + p-tert-Butylphenol-formaldehyde resin (low molecular weight) (36 ug/48h) Kit Cutaneous SmartPractice Denmark ApS 2012-03-01 Not applicable US
Categories
- Drug Categories
- Chemical TaxonomyProvided by Classyfire
- Description
- This compound belongs to the class of organic compounds known as germacranolides and derivatives. These are sesquiterpene lactones with a structure based on the germacranolide skeleton, characterized by a gamma lactone fused to a 1,7-dimethylcyclodec-1-ene moiety.
- Kingdom
- Organic compounds
- Super Class
- Lipids and lipid-like molecules
- Class
- Prenol lipids
- Sub Class
- Terpene lactones
- Direct Parent
- Germacranolides and derivatives
- Alternative Parents
- Germacrane sesquiterpenoids / Gamma butyrolactones / Tetrahydrofurans / Enoate esters / Oxacyclic compounds / Monocarboxylic acids and derivatives / Epoxides / Dialkyl ethers / Organic oxides / Hydrocarbon derivatives show 1 more
- Substituents
- Aliphatic heteropolycyclic compound / Alpha,beta-unsaturated carboxylic ester / Carbonyl group / Carboxylic acid derivative / Carboxylic acid ester / Dialkyl ether / Enoate ester / Ether / Gamma butyrolactone / Germacrane sesquiterpenoid show 12 more
- Molecular Framework
- Aliphatic heteropolycyclic compounds
- External Descriptors
- Germacrane sesquiterpenoids, Germacrenes (C07609) / Germacrane sesquiterpenoids (LMPR0103090002)
- Affected organisms
- Not Available
Chemical Identifiers
- UNII
- 2RDB26I5ZB
- CAS number
- 20554-84-1
- InChI Key
- KTEXNACQROZXEV-SLXBATTESA-N
- InChI
- InChI=1S/C15H20O3/c1-9-5-4-8-15(3)13(18-15)12-11(7-6-9)10(2)14(16)17-12/h5,11-13H,2,4,6-8H2,1,3H3/b9-5+/t11-,12-,13-,15+/m0/s1
- IUPAC Name
- (1S,2S,4R,7E,11S)-4,8-dimethyl-12-methylidene-3,14-dioxatricyclo[9.3.0.0^{2,4}]tetradec-7-en-13-one
- SMILES
- C\C1=C/CC[C@@]2(C)O[C@H]2[C@H]2OC(=O)C(=C)[C@@H]2CC1
References
- General References
- Not Available
- External Links
- KEGG Compound
- C07609
- PubChem Compound
- 6473881
- PubChem Substance
- 347829191
- ChemSpider
- 20126246
- BindingDB
- 50433441
- 32941
- ChEMBL
- CHEMBL540445
- ZINC
- ZINC000030726283
- Wikipedia
- Parthenolide
Clinical Trials
- Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package Phase Status Purpose Conditions Count Start Date Why Stopped 100+ additional columns Unlock 175K+ rows when you subscribe.View sample data2 Completed Diagnostic Allergic Contact Dermatitis 1 somestatus stop reason just information to hide
Pharmacoeconomics
- Manufacturers
- Not Available
- Packagers
- Not Available
- Dosage Forms
Form Route Strength Kit Cutaneous - Prices
- Not Available
- Patents
- Not Available
Properties
- State
- Not Available
- Experimental Properties
- Not Available
- Predicted Properties
Property Value Source Water Solubility 0.196 mg/mL ALOGPS logP 3.03 ALOGPS logP 3.07 Chemaxon logS -3.1 ALOGPS pKa (Strongest Basic) -4.2 Chemaxon Physiological Charge 0 Chemaxon Hydrogen Acceptor Count 2 Chemaxon Hydrogen Donor Count 0 Chemaxon Polar Surface Area 38.83 Å2 Chemaxon Rotatable Bond Count 0 Chemaxon Refractivity 68.55 m3·mol-1 Chemaxon Polarizability 26.87 Å3 Chemaxon Number of Rings 3 Chemaxon Bioavailability 1 Chemaxon Rule of Five Yes Chemaxon Ghose Filter Yes Chemaxon Veber's Rule Yes Chemaxon MDDR-like Rule No Chemaxon - Predicted ADMET Features
- Not Available
Spectra
- Mass Spec (NIST)
- Not Available
- Spectra
Spectrum Spectrum Type Splash Key Predicted GC-MS Spectrum - GC-MS Predicted GC-MS splash10-004i-6960000000-5c1aa0cf39755985bca4 Predicted MS/MS Spectrum - 10V, Positive (Annotated) Predicted LC-MS/MS splash10-000t-0090000000-a2d13d6a19871e1667e7 Predicted MS/MS Spectrum - 10V, Negative (Annotated) Predicted LC-MS/MS splash10-0002-0090000000-da4fa8753133d9ac03a0 Predicted MS/MS Spectrum - 20V, Positive (Annotated) Predicted LC-MS/MS splash10-0kcr-0290000000-99eee7bf32309dce6e51 Predicted MS/MS Spectrum - 20V, Negative (Annotated) Predicted LC-MS/MS splash10-0002-0290000000-9d0790cad7bcbe5221c0 Predicted MS/MS Spectrum - 40V, Positive (Annotated) Predicted LC-MS/MS splash10-001s-3290000000-632d0203240e8be8d361 Predicted MS/MS Spectrum - 40V, Negative (Annotated) Predicted LC-MS/MS splash10-004i-9870000000-81a710cc9ff69406bfb8 Predicted 1H NMR Spectrum 1D NMR Not Applicable Predicted 13C NMR Spectrum 1D NMR Not Applicable - Chromatographic Properties
Collision Cross Sections (CCS)
Adduct CCS Value (Å2) Source type Source [M-H]- 162.5026831 predictedDarkChem Lite v0.1.0 [M-H]- 166.87909 predictedDeepCCS 1.0 (2019) [M+H]+ 162.7826831 predictedDarkChem Lite v0.1.0 [M+H]+ 169.23709 predictedDeepCCS 1.0 (2019) [M+Na]+ 162.7686831 predictedDarkChem Lite v0.1.0 [M+Na]+ 175.95857 predictedDeepCCS 1.0 (2019)
Targets
Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock newinsights and accelerate drug research.
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
1. DetailsProto-oncogene c-Rel
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Inhibitor
- General Function
- Proto-oncogene that may play a role in differentiation and lymphopoiesis. NF-kappa-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. The NF-kappa-B heterodimer RELA/p65-c-Rel is a transcriptional activator
- Specific Function
- Dna-binding transcription activator activity, rna polymerase ii-specific
- Gene Name
- REL
- Uniprot ID
- Q04864
- Uniprot Name
- Proto-oncogene c-Rel
- Molecular Weight
- 68519.05 Da
References
- Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Inhibitor
- General Function
- Serine kinase that plays an essential role in the NF-kappa-B signaling pathway which is activated by multiple stimuli such as inflammatory cytokines, bacterial or viral products, DNA damages or other cellular stresses (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:30337470, PubMed:9346484). Acts as a part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation (PubMed:9346484). Phosphorylates inhibitors of NF-kappa-B on 2 critical serine residues (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:9346484). These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:9346484). In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:9346484). In addition to the NF-kappa-B inhibitors, phosphorylates several other components of the signaling pathway including NEMO/IKBKG, NF-kappa-B subunits RELA and NFKB1, as well as IKK-related kinases TBK1 and IKBKE (PubMed:11297557, PubMed:14673179, PubMed:20410276, PubMed:21138416). IKK-related kinase phosphorylations may prevent the overproduction of inflammatory mediators since they exert a negative regulation on canonical IKKs (PubMed:11297557, PubMed:20410276, PubMed:21138416). Phosphorylates FOXO3, mediating the TNF-dependent inactivation of this pro-apoptotic transcription factor (PubMed:15084260). Also phosphorylates other substrates including NAA10, NCOA3, BCL10 and IRS1 (PubMed:17213322, PubMed:19716809). Phosphorylates RIPK1 at 'Ser-25' which represses its kinase activity and consequently prevents TNF-mediated RIPK1-dependent cell death (By similarity). Phosphorylates the C-terminus of IRF5, stimulating IRF5 homodimerization and translocation into the nucleus (PubMed:25326418)
- Specific Function
- Atp binding
- Gene Name
- IKBKB
- Uniprot ID
- O14920
- Uniprot Name
- Inhibitor of nuclear factor kappa-B kinase subunit beta
- Molecular Weight
- 86563.245 Da
References
- Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
3. DetailsNuclear factor NF-kappa-B p105 subunit
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Inhibitor
- General Function
- NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and RelB-p50 complexes are transcriptional activators. The NF-kappa-B p50-p50 homodimer is a transcriptional repressor, but can act as a transcriptional activator when associated with BCL3. NFKB1 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p105 and generation of p50 by a cotranslational processing. The proteasome-mediated process ensures the production of both p50 and p105 and preserves their independent function, although processing of NFKB1/p105 also appears to occur post-translationally. p50 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. In a complex with MAP3K8, NFKB1/p105 represses MAP3K8-induced MAPK signaling; active MAP3K8 is released by proteasome-dependent degradation of NFKB1/p105
- Specific Function
- Actinin binding
- Gene Name
- NFKB1
- Uniprot ID
- P19838
- Uniprot Name
- Nuclear factor NF-kappa-B p105 subunit
- Molecular Weight
- 105355.175 Da
References
- Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
4. DetailsNuclear factor NF-kappa-B p100 subunit
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Inhibitor
- General Function
- NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. In a non-canonical activation pathway, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes. The NF-kappa-B heterodimeric RelB-p52 complex is a transcriptional activator. The NF-kappa-B p52-p52 homodimer is a transcriptional repressor. NFKB2 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p100 and generation of p52 by a cotranslational processing. The proteasome-mediated process ensures the production of both p52 and p100 and preserves their independent function. p52 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. p52 and p100 are respectively the minor and major form; the processing of p100 being relatively poor. Isoform p49 is a subunit of the NF-kappa-B protein complex, which stimulates the HIV enhancer in synergy with p65. In concert with RELB, regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer
- Specific Function
- Dna-binding transcription activator activity, rna polymerase ii-specific
- Gene Name
- NFKB2
- Uniprot ID
- Q00653
- Uniprot Name
- Nuclear factor NF-kappa-B p100 subunit
- Molecular Weight
- 96748.355 Da
References
- Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
5. DetailsTranscription factor p65
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Inhibitor
- General Function
- NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The heterodimeric RELA-NFKB1 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. The NF-kappa-B heterodimeric RELA-NFKB1 and RELA-REL complexes, for instance, function as transcriptional activators. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. The inhibitory effect of I-kappa-B on NF-kappa-B through retention in the cytoplasm is exerted primarily through the interaction with RELA. RELA shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-kappa-B complex. Beside its activity as a direct transcriptional activator, it is also able to modulate promoters accessibility to transcription factors and thereby indirectly regulate gene expression. Associates with chromatin at the NF-kappa-B promoter region via association with DDX1. Essential for cytokine gene expression in T-cells (PubMed:15790681). The NF-kappa-B homodimeric RELA-RELA complex appears to be involved in invasin-mediated activation of IL-8 expression. Key transcription factor regulating the IFN response during SARS-CoV-2 infection (PubMed:33440148)
- Specific Function
- Actinin binding
- Gene Name
- RELA
- Uniprot ID
- Q04206
- Uniprot Name
- Transcription factor p65
- Molecular Weight
- 60218.53 Da
References
- Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Drug created at October 21, 2016 02:34 / Updated at August 27, 2024 19:16