Brincidofovir

Identification

Summary

Brincidofovir is an oral lipid prodrug of cidofovir used in the treatment of human smallpox disease.

Brand Names
Tembexa
Generic Name
Brincidofovir
DrugBank Accession Number
DB12151
Background

Brincidofovir is an oral antiviral drug used in the treatment of human smallpox infections. It is a lipid conjugate pro-drug of the acyclic nucleotide analogue cidofovir7,3 - this lipid conjugate improves drug delivery to the target cells and significantly reduces the nephrotoxicity typically associated with cidofovir therapy.3,4 Due to its formulation as a pro-drug brincidofovir also carries a greater bioavailability than cidofovir,5,3 allowing for oral administration rather than intravenous. Cidofovir itself has broad antiviral activity against several DNA viruses,3 resulting in brincidofovir being investigated for the prevention and treatment of cytomegalovirus (CMV), BK Virus (BKV), adenoviruses (AdV), and Epstein-Barr virus (EBV), amongst others.

Brincidofovir, developed by Chimerix under the brand name Tembexa, was approved by the FDA for the treatment of smallpox infection in June 2021.8 As smallpox has been eradicated, the efficacy of Tembexa was assessed in animals infected with viruses closely related to variola. The approval was granted under the agency’s Animal Rule,9 which allows for a drug to be approved based on the results of well-controlled animal studies when human trials would be unethical or infeasible.

Type
Small Molecule
Groups
Approved, Investigational
Structure
Weight
Average: 561.701
Monoisotopic: 561.354288024
Chemical Formula
C27H52N3O7P
Synonyms
  • Brincidofovir
  • Cidofovir hexadecyloxypropyl ester
External IDs
  • CMX 001
  • CMX-001
  • CMX001

Pharmacology

Indication

Brincidofovir is indicated for the treatment of human smallpox disease in adult and pediatric patients.7

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Associated Conditions
Indication TypeIndicationCombined Product DetailsApproval LevelAge GroupPatient CharacteristicsDose Form
Treatment ofSmallpox••••••••••••••••••••••• ••••••
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

The pharmacologically active agent resulting from brincidofovir metabolism, cidofovir diphosphate, has an exceedingly long duration of action that allows for it to be dosed once weekly. The entirety of a brincidofovir smallpox treatment consists of only two doses, on days 1 and 8, which seemingly reduces the risk of adverse reactions. Regimens involving a longer duration of administration (i.e. more than a single dose on days 1 and 8) have been shown to increase mortality compared to placebo and should therefore be avoided.7 Brincidofovir is considered a potential human carcinogen and has demonstrated the potential to cause infertility7 - as such, its use should be restricted to situations in which it is absolutely necessary.

Mechanism of action

Brincidofovir is a pro-drug comprising cidofovir conjugated to a lipid molecule - the lipid component mimics an endogenous lipid, lysophosphatidylcholine, which allows the molecule to hijack endogenous lipid uptake pathways to enter infected cells.7,4 Following uptake, the lipid molecule is cleaved to generate cidofovir, which is then phosphorylated to generate the active antiviral compound, cidofovir disphosphate.7

The antiviral effects of cidofovir diphosphate appear to be the result of two distinct mechanisms. Mechanistic studies using recombinant vaccinia DNA polymerase suggest that it inhibits orthopoxvirus DNA polymerase-mediated DNA synthesis. In addition, cidofovir is an acyclic nucleotide analogue of deoxycytidine monophosphate - cidofovir diphosphate can therefore be incorporated into the growing viral DNA chain and consequently slow the rate of viral DNA synthesis.7,3

TargetActionsOrganism
ADNA polymerase theta
inhibitor
Humans
ADNA polymerase beta
inhibitor
Humans
ADNA polymerase subunit gamma-2
inhibitor
Humans
ADNA polymerase subunit gamma-1
inhibitor
Humans
ADNA polymerase epsilon subunit 2
inhibitor
Humans
ADNA polymerase
inhibitor
Variola virus
AVariola virus DNA
incorporation into and destabilization
Variola virus
Absorption

The oral bioavailability of brincidofovir is 13.4% in its tablet formulation and 16.8% in its suspension formulation.7 Following oral administration, the Cmax and AUCtau of brincidofovir were 480 ng/mL and 3400 ng·hr/mL, respectively. The Cmax and AUCtau of the active metabolite, cidofovir diphosphate, were 9.7 pg/106 cells and 1200 pg·hr/106 cells, respectively.7

Maximum plasma concentrations (Tmax) of brincidofovir are reached at approximately 3 hours post-administration, while maximal plasma concentrations for cidofovir diphosphate are reached at approximately 47 hours post-administration.7

Volume of distribution

The apparent volume of distribution of brincidofovir is 1230 L.7

Protein binding

Brincidofovir is >99% protein-bound in plasma,7,4 although the specific protein(s) to which it binds have not been elucidated.

Metabolism

Brincidofovir is a pro-drug of cidofovir and as such must undergo some basic metabolic reactions to become pharmacologically active. Upon entering the target cell, the phosphodiester bond of brincidofovir is hydrolyzed to generate cidofovir, which is then phosphorylated to generate the active agent: cidofovir diphosphate.7 The specific enzyme(s) responsible for this reaction have not been elucidated, but in vitro findings suggest sphingomyelin phosphodiesterase plays a major role in the initial hydrolysis of brincidofovir.7

There are two major inactive metabolites of brincidofovir, CMX103 and CMX064, which are generated via carboxylation of the terminal carbon followed by several cycles of CYP-mediated oxidative reactions and fatty acid oxidation.7,4 These reactions are mediated, at least in part, by CYP4F2.7

Hover over products below to view reaction partners

Route of elimination

Brincidofovir is eliminated as metabolites in both the urine (~51%) and feces (~40%).7

Half-life

The mean terminal half-lives of brincidofovir and its pharmacologically active metabolite, cidofovir diphosphate, are 19.3 hours and 113 hours, respectively.7

Clearance

The apparent clearance of brincidofovir in healthy adult patients is 44.1 L/h.7

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

There is no clinical experience with brincidofovir overdose. Patients experiencing overdosage should be monitored closely and provided supportive therapy as clinically indicated.7

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
AcetylcysteineThe serum concentration of Brincidofovir can be increased when it is combined with Acetylcysteine.
Adenovirus type 7 vaccine liveThe therapeutic efficacy of Adenovirus type 7 vaccine live can be decreased when used in combination with Brincidofovir.
AmprenavirThe serum concentration of Brincidofovir can be increased when it is combined with Amprenavir.
Anthrax vaccineThe therapeutic efficacy of Anthrax vaccine can be decreased when used in combination with Brincidofovir.
ApalutamideThe serum concentration of Brincidofovir can be decreased when it is combined with Apalutamide.
Food Interactions
  • Take on an empty stomach. Brincidofovir is best absorbed on an empty stomach or alongside a low-fat meal.

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
Product Ingredients
IngredientUNIICASInChI Key
Brincidofovir sodium8UN8SA9Z5C496765-79-8CRDDLOITBKEPRN-UQIIZPHYSA-M
Active Moieties
NameKindUNIICASInChI Key
Cidofovirprodrug768M1V522C113852-37-2VWFCHDSQECPREK-LURJTMIESA-N
International/Other Brands
Tembexa (Chimerix)
Brand Name Prescription Products
NameDosageStrengthRouteLabellerMarketing StartMarketing EndRegionImage
TembexaSuspension10 mg/1mLOralChimerix, Inc.2022-04-20Not applicableUS flag
TembexaTablet, film coated100 mg/1OralChimerix, Inc.2022-04-20Not applicableUS flag
TembexaTablet, film coated100 mg/1OralEmergent Biodefense Operations Lansing Llc2022-04-20Not applicableUS flag
TembexaSuspension10 mg/1mLOralEmergent Biodefense Operations Lansing Llc2022-04-20Not applicableUS flag

Categories

ATC Codes
J05AB17 — Brincidofovir
Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as pyrimidones. These are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions.
Kingdom
Organic compounds
Super Class
Organoheterocyclic compounds
Class
Diazines
Sub Class
Pyrimidines and pyrimidine derivatives
Direct Parent
Pyrimidones
Alternative Parents
Aminopyrimidines and derivatives / Phosphonic acid esters / Imidolactams / Hydropyrimidines / Organic phosphonic acids / Heteroaromatic compounds / Dialkyl ethers / Azacyclic compounds / Primary amines / Primary alcohols
show 4 more
Substituents
Alcohol / Amine / Aminopyrimidine / Aromatic heteromonocyclic compound / Azacycle / Dialkyl ether / Ether / Heteroaromatic compound / Hydrocarbon derivative / Hydropyrimidine
show 14 more
Molecular Framework
Aromatic heteromonocyclic compounds
External Descriptors
Not Available
Affected organisms
  • Human Cytomegalovirus
  • Variola virus

Chemical Identifiers

UNII
6794O900AX
CAS number
444805-28-1
InChI Key
WXJFKKQWPMNTIM-VWLOTQADSA-N
InChI
InChI=1S/C27H52N3O7P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-19-35-20-16-21-37-38(33,34)24-36-25(23-31)22-30-18-17-26(28)29-27(30)32/h17-18,25,31H,2-16,19-24H2,1H3,(H,33,34)(H2,28,29,32)/t25-/m0/s1
IUPAC Name
({[(2S)-1-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3-hydroxypropan-2-yl]oxy}methyl)[3-(hexadecyloxy)propoxy]phosphinic acid
SMILES
CCCCCCCCCCCCCCCCOCCCOP(O)(=O)CO[C@H](CO)CN1C=CC(N)=NC1=O

References

Synthesis Reference

Hostetler KY: Synthesis and early development of hexadecyloxypropylcidofovir: an oral antipoxvirus nucleoside phosphonate. Viruses. 2010 Oct;2(10):2213-25. doi: 10.3390/v2102213. Epub 2010 Sep 30.

General References
  1. Quenelle DC, Prichard MN, Keith KA, Hruby DE, Jordan R, Painter GR, Robertson A, Kern ER: Synergistic efficacy of the combination of ST-246 with CMX001 against orthopoxviruses. Antimicrob Agents Chemother. 2007 Nov;51(11):4118-24. Epub 2007 Aug 27. [Article]
  2. Parker S, Touchette E, Oberle C, Almond M, Robertson A, Trost LC, Lampert B, Painter G, Buller RM: Efficacy of therapeutic intervention with an oral ether-lipid analogue of cidofovir (CMX001) in a lethal mousepox model. Antiviral Res. 2008 Jan;77(1):39-49. Epub 2007 Sep 4. [Article]
  3. Delaune D, Iseni F: Drug Development against Smallpox: Present and Future. Antimicrob Agents Chemother. 2020 Mar 24;64(4). pii: AAC.01683-19. doi: 10.1128/AAC.01683-19. Print 2020 Mar 24. [Article]
  4. Tippin TK, Morrison ME, Brundage TM, Mommeja-Marin H: Brincidofovir Is Not a Substrate for the Human Organic Anion Transporter 1: A Mechanistic Explanation for the Lack of Nephrotoxicity Observed in Clinical Studies. Ther Drug Monit. 2016 Dec;38(6):777-786. doi: 10.1097/FTD.0000000000000353. [Article]
  5. Painter W, Robertson A, Trost LC, Godkin S, Lampert B, Painter G: First pharmacokinetic and safety study in humans of the novel lipid antiviral conjugate CMX001, a broad-spectrum oral drug active against double-stranded DNA viruses. Antimicrob Agents Chemother. 2012 May;56(5):2726-34. doi: 10.1128/AAC.05983-11. Epub 2012 Mar 5. [Article]
  6. Hostetler KY: Synthesis and early development of hexadecyloxypropylcidofovir: an oral antipoxvirus nucleoside phosphonate. Viruses. 2010 Oct;2(10):2213-25. doi: 10.3390/v2102213. Epub 2010 Sep 30. [Article]
  7. FDA Approved Drug Products: Tembexa (brincidofovir) for oral administration [Link]
  8. FDA News Release: FDA approves drug to treat smallpox [Link]
  9. FDA MCM Regulatory Science: Animal Rule Information [Link]
PubChem Compound
483477
PubChem Substance
347828447
ChemSpider
424003
ChEMBL
CHEMBL203321
ZINC
ZINC000014141521
Wikipedia
Brincidofovir

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns
3CompletedTreatmentAdenovirus Infections1somestatusstop reasonjust information to hide
3CompletedTreatmentCMV1somestatusstop reasonjust information to hide
3CompletedTreatmentDouble-stranded DNA Virus1somestatusstop reasonjust information to hide
3TerminatedPreventionCytomegalovirus Disease1somestatusstop reasonjust information to hide
3TerminatedPreventionCytomegalovirus Disease / Kidney Transplant Infection1somestatusstop reasonjust information to hide

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage Forms
FormRouteStrength
SuspensionOral10 mg/1mL
SuspensionOral10 mg / mL
TabletOral100 mg
Tablet, film coatedOral100 mg/1
Prices
Not Available
Patents
Patent NumberPediatric ExtensionApprovedExpires (estimated)Region
US9303051No2016-04-052031-08-31US flag
US10112909No2018-10-302034-10-10US flag
US10487061No2019-11-262034-10-10US flag
US9371344No2016-06-212034-10-10US flag
US8962829No2015-02-242034-10-10US flag

Properties

State
Solid
Experimental Properties
PropertyValueSource
water solubilityPractically insolublehttps://www.chimerix.com/wp-content/uploads/2021/06/TEMBEXA-USPI-and-PPI-04June2021.pdf
Predicted Properties
PropertyValueSource
Water Solubility0.00124 mg/mLALOGPS
logP4.4ALOGPS
logP4.42Chemaxon
logS-5.6ALOGPS
pKa (Strongest Acidic)1.32Chemaxon
pKa (Strongest Basic)4.66Chemaxon
Physiological Charge-1Chemaxon
Hydrogen Acceptor Count8Chemaxon
Hydrogen Donor Count3Chemaxon
Polar Surface Area143.91 Å2Chemaxon
Rotatable Bond Count26Chemaxon
Refractivity149.9 m3·mol-1Chemaxon
Polarizability65.31 Å3Chemaxon
Number of Rings1Chemaxon
Bioavailability0Chemaxon
Rule of FiveNoChemaxon
Ghose FilterNoChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleNoChemaxon
Predicted ADMET Features
Not Available

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-03di-9406180000-423b6f36504f6bb7f0b8
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-03di-1013090000-c4bfd35824db32837c57
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-0006-7912050000-c29d3194f56cecb7ed36
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-01tc-9722050000-f97af99b56406f4c9b48
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-0f7k-9411000000-5f032afa34cda86799b9
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-002f-9100020000-b1b29cb2054c5049e59d
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-261.2076724
predicted
DarkChem Lite v0.1.0
[M-H]-229.19283
predicted
DeepCCS 1.0 (2019)
[M+H]+262.5762724
predicted
DarkChem Lite v0.1.0
[M+H]+232.71542
predicted
DeepCCS 1.0 (2019)
[M+Na]+263.4117724
predicted
DarkChem Lite v0.1.0
[M+Na]+241.41753
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Low-fidelity DNA polymerase with a helicase activity that promotes microhomology-mediated end-joining (MMEJ), an alternative non-homologous end-joining (NHEJ) machinery required to repair double-strand breaks in DNA during mitosis (PubMed:14576298, PubMed:18503084, PubMed:24648516, PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:26636256, PubMed:27311885, PubMed:27591252, PubMed:30655289, PubMed:31562312, PubMed:32873648, PubMed:34140467, PubMed:34179826, PubMed:36455556, PubMed:37440612, PubMed:37674080). MMEJ is an error-prone repair pathway that produces deletions of sequences from the strand being repaired and promotes genomic rearrangements, such as telomere fusions, some of them leading to cellular transformation (PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252, PubMed:31562312, PubMed:32873648). MMEJ is required during mitosis to repair persistent double-strand breaks that originate in S-phase (PubMed:37440612, PubMed:37674080). Although error-prone, MMEJ protects against chromosomal instability and tumorigenesis (By similarity). The polymerase acts by binding directly the 2 ends of resected double-strand breaks, allowing microhomologous sequences in the overhangs to form base pairs (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). It then extends each strand from the base-paired region using the opposing overhang as a template (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). Requires partially resected DNA containing 2 to 6 base pairs of microhomology to perform MMEJ (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). The polymerase lacks proofreading activity and is highly promiscuous: unlike most polymerases, promotes extension of ssDNA and partial ssDNA (pssDNA) substrates (PubMed:18503084, PubMed:21050863, PubMed:22135286). When the ends of a break do not contain terminal microhomology must identify embedded complementary sequences through a scanning step (PubMed:32234782). Also shows endonuclease activity, which is required to trim the 3' ends before synthesis can occur, thereby preventing non-paired tails (PubMed:33577776). Also acts as a DNA helicase, promoting dissociation of the replication protein A complex (RPA/RP-A), composed of RPA1, RPA2 and RPA3, from resected double-strand breaks to allow their annealing and subsequent joining by MMEJ (PubMed:36455556). Removal of RPA/RP-A complex proteins prevents RAD51 accumulation at resected ends, thereby inhibiting homology-recombination repair (HR) pathway (PubMed:25642963, PubMed:28695890). Also shows RNA-directed DNA polymerase activity to mediate DNA repair in vitro; however this activity needs additional evidence in vivo (PubMed:34117057). May also have lyase activity (PubMed:19188258). Involved in somatic hypermutation of immunoglobulin genes, a process that requires the activity of DNA polymerases to ultimately introduce mutations at both A/T and C/G base pairs (By similarity). POLQ-mediated end joining activity is involved in random integration of exogenous DNA hampers (PubMed:28695890)
Specific Function
5'-deoxyribose-5-phosphate lyase activity
Gene Name
POLQ
Uniprot ID
O75417
Uniprot Name
DNA polymerase theta
Molecular Weight
289616.715 Da
References
  1. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Repair polymerase that plays a key role in base-excision repair (PubMed:10556592, PubMed:9207062, PubMed:9572863). During this process, the damaged base is excised by specific DNA glycosylases, the DNA backbone is nicked at the abasic site by an apurinic/apyrimidic (AP) endonuclease, and POLB removes 5'-deoxyribose-phosphate from the preincised AP site acting as a 5'-deoxyribose-phosphate lyase (5'-dRP lyase); through its DNA polymerase activity, it adds one nucleotide to the 3' end of the arising single-nucleotide gap (PubMed:10556592, PubMed:17526740, PubMed:9556598, PubMed:9572863, PubMed:9614142). Conducts 'gap-filling' DNA synthesis in a stepwise distributive fashion rather than in a processive fashion as for other DNA polymerases. It is also able to cleave sugar-phosphate bonds 3' to an intact AP site, acting as an AP lyase (PubMed:9614142)
Specific Function
5'-deoxyribose-5-phosphate lyase activity
Gene Name
POLB
Uniprot ID
P06746
Uniprot Name
DNA polymerase beta
Molecular Weight
38177.34 Da
References
  1. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Accessory subunit of DNA polymerase gamma solely responsible for replication of mitochondrial DNA (mtDNA). Acts as an allosteric regulator of the holoenzyme activities. Enhances the polymerase activity and the processivity of POLG by increasing its interactions with the DNA template. Suppresses POLG exonucleolytic proofreading especially toward homopolymeric templates bearing mismatched termini. Binds to single-stranded DNA
Specific Function
Dna polymerase binding
Gene Name
POLG2
Uniprot ID
Q9UHN1
Uniprot Name
DNA polymerase subunit gamma-2
Molecular Weight
54910.67 Da
References
  1. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Catalytic subunit of DNA polymerase gamma solely responsible for replication of mitochondrial DNA (mtDNA). Replicates both heavy and light strands of the circular mtDNA genome using a single-stranded DNA template, RNA primers and the four deoxyribonucleoside triphosphates as substrates (PubMed:11477093, PubMed:11897778, PubMed:15917273, PubMed:19837034, PubMed:9558343). Has 5' -> 3' polymerase activity. Functionally interacts with TWNK and SSBP1 at the replication fork to form a highly processive replisome, where TWNK unwinds the double-stranded DNA template prior to replication and SSBP1 covers the parental heavy strand to enable continuous replication of the entire mitochondrial genome. A single nucleotide incorporation cycle includes binding of the incoming nucleotide at the insertion site, a phosphodiester bond formation reaction that extends the 3'-end of the primer DNA, and translocation of the primer terminus to the post-insertion site. After completing replication of a mtDNA strand, mediates 3' -> 5' exonucleolytic degradation at the nick to enable proper ligation (PubMed:11477093, PubMed:11897778, PubMed:15167897, PubMed:15917273, PubMed:19837034, PubMed:26095671, PubMed:9558343). Highly accurate due to high nucleotide selectivity and 3' -> 5' exonucleolytic proofreading. Proficiently corrects base substitutions, single-base additions and deletions in non-repetitive sequences and short repeats, but displays lower proofreading activity when replicating longer homopolymeric stretches. Exerts exonuclease activity toward single-stranded DNA and double-stranded DNA containing 3'-terminal mispairs. When a misincorporation occurs, transitions from replication to a pro-nucleolytic editing mode and removes the missincorporated nucleoside in the exonuclease active site. Proceeds via an SN2 nucleolytic mechanism in which Asp-198 catalyzes phosphodiester bond hydrolysis and Glu-200 stabilizes the leaving group. As a result the primer strand becomes one nucleotide shorter and is positioned in the post-insertion site, ready to resume DNA synthesis (PubMed:10827171, PubMed:11477094, PubMed:11504725, PubMed:37202477). Exerts 5'-deoxyribose phosphate (dRP) lyase activity and mediates repair-associated mtDNA synthesis (gap filling) in base-excision repair pathway. Catalyzes the release of the 5'-terminal 2-deoxyribose-5-phosphate sugar moiety from incised apurinic/apyrimidinic (AP) sites to produce a substrate for DNA ligase. The dRP lyase reaction does not require divalent metal ions and likely proceeds via a Schiff base intermediate in a beta-elimination reaction mechanism (PubMed:9770471)
Specific Function
3'-5' exonuclease activity
Gene Name
POLG
Uniprot ID
P54098
Uniprot Name
DNA polymerase subunit gamma-1
Molecular Weight
139561.06 Da
References
  1. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Accessory component of the DNA polymerase epsilon complex (PubMed:10801849). Participates in DNA repair and in chromosomal DNA replication (By similarity)
Specific Function
Dna binding
Gene Name
POLE2
Uniprot ID
P56282
Uniprot Name
DNA polymerase epsilon subunit 2
Molecular Weight
59536.64 Da
References
  1. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Variola virus
Pharmacological action
Yes
Actions
Inhibitor
General Function
Catalyzes DNA synthesis. Acquires processivity by associating with a heterodimeric processivity factor comprised of the viral A20 and D4 proteins, thereby forming the DNA polymerase holoenzyme. Displays 3'- to 5' exonuclease activity. Might participate in viral DNA recombination. Does not perform translesion synthesis across an abasic site (By similarity).
Specific Function
Dna binding
Gene Name
POL
Uniprot ID
P0DOO6
Uniprot Name
DNA polymerase
Molecular Weight
116714.76 Da
References
  1. Griffiths P, Lumley S: Cytomegalovirus. Curr Opin Infect Dis. 2014 Dec;27(6):554-9. doi: 10.1097/QCO.0000000000000107. [Article]
  2. Tippin TK, Morrison ME, Brundage TM, Mommeja-Marin H: Brincidofovir Is Not a Substrate for the Human Organic Anion Transporter 1: A Mechanistic Explanation for the Lack of Nephrotoxicity Observed in Clinical Studies. Ther Drug Monit. 2016 Dec;38(6):777-786. doi: 10.1097/FTD.0000000000000353. [Article]
  3. FDA Approved Drug Products: Tembexa (brincidofovir) for oral administration [Link]
Kind
Nucleotide
Organism
Variola virus
Pharmacological action
Yes
Actions
Incorporation into and destabilization
A portion of the Variola virus genome meant to represent Variola viral DNA as a drug target.
References
  1. FDA Approved Drug Products: Tembexa (brincidofovir) for oral administration [Link]

Enzymes

Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Substrate
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, eicosanoids and vitamins (PubMed:10660572, PubMed:10833273, PubMed:11997390, PubMed:17341693, PubMed:18574070, PubMed:18577768). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH-ferrihemoprotein reductase). Catalyzes predominantly the oxidation of the terminal carbon (omega-oxidation) of long- and very long-chain fatty acids. Displays high omega-hydroxylase activity toward polyunsaturated fatty acids (PUFAs) (PubMed:18577768). Participates in the conversion of arachidonic acid to omega-hydroxyeicosatetraenoic acid (20-HETE), a signaling molecule acting both as vasoconstrictive and natriuretic with overall effect on arterial blood pressure (PubMed:10660572, PubMed:17341693, PubMed:18574070). Plays a role in the oxidative inactivation of eicosanoids, including both pro-inflammatory and anti-inflammatory mediators such as leukotriene B4 (LTB4), lipoxin A4 (LXA4), and several HETEs (PubMed:10660572, PubMed:10833273, PubMed:17341693, PubMed:18574070, PubMed:18577768, PubMed:8026587, PubMed:9799565). Catalyzes omega-hydroxylation of 3-hydroxy fatty acids (PubMed:18065749). Converts monoepoxides of linoleic acid leukotoxin and isoleukotoxin to omega-hydroxylated metabolites (PubMed:15145985). Contributes to the degradation of very long-chain fatty acids (VLCFAs) by catalyzing successive omega-oxidations and chain shortening (PubMed:16547005, PubMed:18182499). Plays an important role in vitamin metabolism by chain shortening. Catalyzes omega-hydroxylation of the phytyl chain of tocopherols (forms of vitamin E), with preference for gamma-tocopherols over alpha-tocopherols, thus promoting retention of alpha-tocopherols in tissues (PubMed:11997390). Omega-hydroxylates and inactivates phylloquinone (vitamin K1), and menaquinone-4 (MK-4, a form of vitamin K2), both acting as cofactors in blood coagulation (PubMed:19297519, PubMed:24138531)
Specific Function
20-aldehyde-leukotriene b4 20-monooxygenase activity
Gene Name
CYP4F2
Uniprot ID
P78329
Uniprot Name
Cytochrome P450 4F2
Molecular Weight
59852.825 Da
References
  1. FDA Approved Drug Products: Tembexa (brincidofovir) for oral administration [Link]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Substrate
General Function
Converts sphingomyelin to ceramide (PubMed:12563314, PubMed:1840600, PubMed:18815062, PubMed:25339683, PubMed:25920558, PubMed:27659707, PubMed:33163980). Exists as two enzymatic forms that arise from alternative trafficking of a single protein precursor, one that is targeted to the endolysosomal compartment, whereas the other is released extracellularly (PubMed:20807762, PubMed:21098024, PubMed:9660788). However, in response to various forms of stress, lysosomal exocytosis may represent a major source of the secretory form (PubMed:12563314, PubMed:20530211, PubMed:20807762, PubMed:22573858, PubMed:9393854)
Specific Function
Acid sphingomyelin phosphodiesterase activity
Gene Name
SMPD1
Uniprot ID
P17405
Uniprot Name
Sphingomyelin phosphodiesterase
Molecular Weight
69935.53 Da
References
  1. FDA Approved Drug Products: Tembexa (brincidofovir) for oral administration [Link]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:19965576, PubMed:9435160). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:19965576, PubMed:9435160). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:11555828, PubMed:12865317). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2 (PubMed:11555828, PubMed:12865317). Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). May act as a major enzyme for all-trans retinoic acid biosynthesis in the liver. Catalyzes two successive oxidative transformation of all-trans retinol to all-trans retinal and then to the active form all-trans retinoic acid (PubMed:10681376). Primarily catalyzes stereoselective epoxidation of the last double bond of polyunsaturated fatty acids (PUFA), displaying a strong preference for the (R,S) stereoisomer (PubMed:19965576). Catalyzes bisallylic hydroxylation and omega-1 hydroxylation of PUFA (PubMed:9435160). May also participate in eicosanoids metabolism by converting hydroperoxide species into oxo metabolites (lipoxygenase-like reaction, NADPH-independent) (PubMed:21068195). Plays a role in the oxidative metabolism of xenobiotics. Catalyzes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin (PubMed:14725854). Metabolizes caffeine via N3-demethylation (Probable)
Specific Function
Aromatase activity
Gene Name
CYP1A2
Uniprot ID
P05177
Uniprot Name
Cytochrome P450 1A2
Molecular Weight
58406.915 Da
References
  1. FDA Approved Drug Products: Tembexa (brincidofovir) for oral administration [Link]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of endocannabinoids and steroids (PubMed:12865317, PubMed:21289075). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the epoxidation of double bonds of arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:21289075). Hydroxylates steroid hormones, including testosterone at C-16 and estrogens at C-2 (PubMed:12865317, PubMed:21289075). Plays a role in the oxidative metabolism of xenobiotics, including plant lipids and drugs (PubMed:11695850, PubMed:22909231). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850)
Specific Function
Anandamide 11,12 epoxidase activity
Gene Name
CYP2B6
Uniprot ID
P20813
Uniprot Name
Cytochrome P450 2B6
Molecular Weight
56277.81 Da
References
  1. FDA Approved Drug Products: Tembexa (brincidofovir) for oral administration [Link]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Primarily catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) with a preference for the last double bond (PubMed:15766564, PubMed:19965576, PubMed:7574697). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes all trans-retinoic acid toward its 4-hydroxylated form (PubMed:11093772). Displays 16-alpha hydroxylase activity toward estrogen steroid hormones, 17beta-estradiol (E2) and estrone (E1) (PubMed:14559847). Plays a role in the oxidative metabolism of xenobiotics. It is the principal enzyme responsible for the metabolism of the anti-cancer drug paclitaxel (taxol) (PubMed:26427316)
Specific Function
Arachidonic acid epoxygenase activity
Gene Name
CYP2C8
Uniprot ID
P10632
Uniprot Name
Cytochrome P450 2C8
Molecular Weight
55824.275 Da
References
  1. FDA Approved Drug Products: Tembexa (brincidofovir) for oral administration [Link]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids and steroids (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:15766564, PubMed:19965576, PubMed:7574697, PubMed:9866708). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Exhibits low catalytic activity for the formation of catechol estrogens from 17beta-estradiol (E2) and estrone (E1), namely 2-hydroxy E1 and E2 (PubMed:12865317). Catalyzes bisallylic hydroxylation and hydroxylation with double-bond migration of polyunsaturated fatty acids (PUFA) (PubMed:9435160, PubMed:9866708). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan (PubMed:25994031)
Specific Function
(r)-limonene 6-monooxygenase activity
Gene Name
CYP2C9
Uniprot ID
P11712
Uniprot Name
Cytochrome P450 2C9
Molecular Weight
55627.365 Da
References
  1. FDA Approved Drug Products: Tembexa (brincidofovir) for oral administration [Link]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of polyunsaturated fatty acids (PUFA) (PubMed:18577768, PubMed:19965576, PubMed:20972997). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18577768, PubMed:19965576, PubMed:20972997). Catalyzes the hydroxylation of carbon-hydrogen bonds. Hydroxylates PUFA specifically at the omega-1 position (PubMed:18577768). Catalyzes the epoxidation of double bonds of PUFA (PubMed:19965576, PubMed:20972997). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine. Hydroxylates fenbendazole at the 4' position (PubMed:23959307)
Specific Function
(r)-limonene 6-monooxygenase activity
Gene Name
CYP2C19
Uniprot ID
P33261
Uniprot Name
Cytochrome P450 2C19
Molecular Weight
55944.565 Da
References
  1. FDA Approved Drug Products: Tembexa (brincidofovir) for oral administration [Link]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of fatty acids, steroids and retinoids (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:19965576, PubMed:20972997). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 20-hydroxyeicosatetraenoic acid ethanolamide (20-HETE-EA) and 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:18698000, PubMed:21289075). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Catalyzes the oxidative transformations of all-trans retinol to all-trans retinal, a precursor for the active form all-trans-retinoic acid (PubMed:10681376). Also involved in the oxidative metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants
Specific Function
Anandamide 11,12 epoxidase activity
Gene Name
CYP2D6
Uniprot ID
P10635
Uniprot Name
Cytochrome P450 2D6
Molecular Weight
55768.94 Da
References
  1. FDA Approved Drug Products: Tembexa (brincidofovir) for oral administration [Link]

Transporters

Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Substrate
Inhibitor
General Function
Mediates the Na(+)-independent uptake of organic anions (PubMed:10358072, PubMed:15159445, PubMed:17412826). Shows broad substrate specificity, can transport both organic anions such as bile acid taurocholate (cholyltaurine) and conjugated steroids (dehydroepiandrosterone 3-sulfate, 17-beta-glucuronosyl estradiol, and estrone 3-sulfate), as well as eicosanoids (prostaglandin E2, thromboxane B2, leukotriene C4, and leukotriene E4), and thyroid hormones (T4/L-thyroxine, and T3/3,3',5'-triiodo-L-thyronine) (PubMed:10358072, PubMed:10601278, PubMed:10873595, PubMed:11159893, PubMed:12196548, PubMed:12568656, PubMed:15159445, PubMed:15970799, PubMed:16627748, PubMed:17412826, PubMed:19129463, PubMed:26979622). Can take up bilirubin glucuronides from plasma into the liver, contributing to the detoxification-enhancing liver-blood shuttling loop (PubMed:22232210). Involved in the clearance of endogenous and exogenous substrates from the liver (PubMed:10358072, PubMed:10601278). Transports coproporphyrin I and III, by-products of heme synthesis, and may be involved in their hepatic disposition (PubMed:26383540). May contribute to regulate the transport of organic compounds in testes across the blood-testis-barrier (Probable). Can transport HMG-CoA reductase inhibitors (also known as statins), such as pravastatin and pitavastatin, a clinically important class of hypolipidemic drugs (PubMed:10601278, PubMed:15159445, PubMed:15970799). May play an important role in plasma and tissue distribution of the structurally diverse chemotherapeutic drug methotrexate (PubMed:23243220). May also transport antihypertension agents, such as the angiotensin-converting enzyme (ACE) inhibitor prodrug enalapril, and the highly selective angiotensin II AT1-receptor antagonist valsartan, in the liver (PubMed:16624871, PubMed:16627748). Shows a pH-sensitive substrate specificity towards prostaglandin E2 and T4 which may be ascribed to the protonation state of the binding site and leads to a stimulation of substrate transport in an acidic microenvironment (PubMed:19129463). Hydrogencarbonate/HCO3(-) acts as the probable counteranion that exchanges for organic anions (PubMed:19129463)
Specific Function
Bile acid transmembrane transporter activity
Gene Name
SLCO1B1
Uniprot ID
Q9Y6L6
Uniprot Name
Solute carrier organic anion transporter family member 1B1
Molecular Weight
76447.99 Da
References
  1. FDA Approved Drug Products: Tembexa (brincidofovir) for oral administration [Link]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Substrate
General Function
Mediates the Na(+)-independent uptake of organic anions (PubMed:10779507, PubMed:15159445, PubMed:17412826). Shows broad substrate specificity, can transport both organic anions such as bile acid taurocholate (cholyltaurine) and conjugated steroids (17-beta-glucuronosyl estradiol, dehydroepiandrosterone sulfate (DHEAS), and estrone 3-sulfate), as well as eicosanoid leukotriene C4, prostaglandin E2 and L-thyroxine (T4) (PubMed:10779507, PubMed:11159893, PubMed:12568656, PubMed:15159445, PubMed:17412826, PubMed:19129463). Hydrogencarbonate/HCO3(-) acts as the probable counteranion that exchanges for organic anions (PubMed:19129463). Shows a pH-sensitive substrate specificity towards sulfated steroids, taurocholate and T4 which may be ascribed to the protonation state of the binding site and leads to a stimulation of substrate transport in an acidic microenvironment (PubMed:19129463). Involved in the clearance of bile acids and organic anions from the liver (PubMed:22232210). Can take up bilirubin glucuronides from plasma into the liver, contributing to the detoxification-enhancing liver-blood shuttling loop (PubMed:22232210). Transports coproporphyrin I and III, by-products of heme synthesis, and may be involved in their hepatic disposition (PubMed:26383540). May contribute to regulate the transport of organic compounds in testes across the blood-testis-barrier (Probable). Can transport HMG-CoA reductase inhibitors (also known as statins) such as pitavastatin, a clinically important class of hypolipidemic drugs (PubMed:15159445). May play an important role in plasma and tissue distribution of the structurally diverse chemotherapeutic drugs methotrexate and paclitaxel (PubMed:23243220). May also transport antihypertension agents, such as the angiotensin-converting enzyme (ACE) inhibitor prodrug enalapril, and the highly selective angiotensin II AT1-receptor antagonist valsartan, in the liver (PubMed:16624871, PubMed:16627748)
Specific Function
Bile acid transmembrane transporter activity
Gene Name
SLCO1B3
Uniprot ID
Q9NPD5
Uniprot Name
Solute carrier organic anion transporter family member 1B3
Molecular Weight
77402.175 Da
References
  1. FDA Approved Drug Products: Tembexa (brincidofovir) for oral administration [Link]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
Broad substrate specificity ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes a wide variety of physiological compounds, dietary toxins and xenobiotics from cells (PubMed:11306452, PubMed:12958161, PubMed:19506252, PubMed:20705604, PubMed:28554189, PubMed:30405239, PubMed:31003562). Involved in porphyrin homeostasis, mediating the export of protoporphyrin IX (PPIX) from both mitochondria to cytosol and cytosol to extracellular space, it also functions in the cellular export of heme (PubMed:20705604, PubMed:23189181). Also mediates the efflux of sphingosine-1-P from cells (PubMed:20110355). Acts as a urate exporter functioning in both renal and extrarenal urate excretion (PubMed:19506252, PubMed:20368174, PubMed:22132962, PubMed:31003562, PubMed:36749388). In kidney, it also functions as a physiological exporter of the uremic toxin indoxyl sulfate (By similarity). Also involved in the excretion of steroids like estrone 3-sulfate/E1S, 3beta-sulfooxy-androst-5-en-17-one/DHEAS, and other sulfate conjugates (PubMed:12682043, PubMed:28554189, PubMed:30405239). Mediates the secretion of the riboflavin and biotin vitamins into milk (By similarity). Extrudes pheophorbide a, a phototoxic porphyrin catabolite of chlorophyll, reducing its bioavailability (By similarity). Plays an important role in the exclusion of xenobiotics from the brain (Probable). It confers to cells a resistance to multiple drugs and other xenobiotics including mitoxantrone, pheophorbide, camptothecin, methotrexate, azidothymidine, and the anthracyclines daunorubicin and doxorubicin, through the control of their efflux (PubMed:11306452, PubMed:12477054, PubMed:15670731, PubMed:18056989, PubMed:31254042). In placenta, it limits the penetration of drugs from the maternal plasma into the fetus (By similarity). May play a role in early stem cell self-renewal by blocking differentiation (By similarity)
Specific Function
Abc-type xenobiotic transporter activity
Gene Name
ABCG2
Uniprot ID
Q9UNQ0
Uniprot Name
Broad substrate specificity ATP-binding cassette transporter ABCG2
Molecular Weight
72313.47 Da
References
  1. FDA Approved Drug Products: Tembexa (brincidofovir) for oral administration [Link]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
ATP-dependent transporter of the ATP-binding cassette (ABC) family that binds and hydrolyzes ATP to enable active transport of various substrates including many drugs, toxicants and endogenous compound across cell membranes. Transports a wide variety of conjugated organic anions such as sulfate-, glucuronide- and glutathione (GSH)-conjugates of endo- and xenobiotics substrates (PubMed:10220572, PubMed:10421658, PubMed:11500505, PubMed:16332456). Mediates hepatobiliary excretion of mono- and bis-glucuronidated bilirubin molecules and therefore play an important role in bilirubin detoxification (PubMed:10421658). Mediates also hepatobiliary excretion of others glucuronide conjugates such as 17beta-estradiol 17-glucosiduronic acid and leukotriene C4 (PubMed:11500505). Transports sulfated bile salt such as taurolithocholate sulfate (PubMed:16332456). Transports various anticancer drugs, such as anthracycline, vinca alkaloid and methotrexate and HIV-drugs such as protease inhibitors (PubMed:10220572, PubMed:11500505, PubMed:12441801). Confers resistance to several anti-cancer drugs including cisplatin, doxorubicin, epirubicin, methotrexate, etoposide and vincristine (PubMed:10220572, PubMed:11500505)
Specific Function
Abc-type glutathione s-conjugate transporter activity
Gene Name
ABCC2
Uniprot ID
Q92887
Uniprot Name
ATP-binding cassette sub-family C member 2
Molecular Weight
174205.64 Da
References
  1. FDA Approved Drug Products: Tembexa (brincidofovir) for oral administration [Link]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
Secondary active transporter that functions as a Na(+)-independent organic anion (OA)/dicarboxylate antiporter where the uptake of one molecule of OA into the cell is coupled with an efflux of one molecule of intracellular dicarboxylate such as 2-oxoglutarate or glutarate (PubMed:11669456, PubMed:11907186, PubMed:14675047, PubMed:22108572, PubMed:23832370, PubMed:28534121, PubMed:9950961). Mediates the uptake of OA across the basolateral side of proximal tubule epithelial cells, thereby contributing to the renal elimination of endogenous OA from the systemic circulation into the urine (PubMed:9887087). Functions as a biopterin transporters involved in the uptake and the secretion of coenzymes tetrahydrobiopterin (BH4), dihydrobiopterin (BH2) and sepiapterin to urine, thereby determining baseline levels of blood biopterins (PubMed:28534121). Transports prostaglandin E2 (PGE2) and prostaglandin F2-alpha (PGF2-alpha) and may contribute to their renal excretion (PubMed:11907186). Also mediates the uptake of cyclic nucleotides such as cAMP and cGMP (PubMed:26377792). Involved in the transport of neuroactive tryptophan metabolites kynurenate (KYNA) and xanthurenate (XA) and may contribute to their secretion from the brain (PubMed:22108572, PubMed:23832370). May transport glutamate (PubMed:26377792). Also involved in the disposition of uremic toxins and potentially toxic xenobiotics by the renal organic anion secretory pathway, helping reduce their undesired toxicological effects on the body (PubMed:11669456, PubMed:14675047). Uremic toxins include the indoxyl sulfate (IS), hippurate/N-benzoylglycine (HA), indole acetate (IA), 3-carboxy-4- methyl-5-propyl-2-furanpropionate (CMPF) and urate (PubMed:14675047, PubMed:26377792). Xenobiotics include the mycotoxin ochratoxin (OTA) (PubMed:11669456). May also contribute to the transport of organic compounds in testes across the blood-testis-barrier (PubMed:35307651)
Specific Function
Alpha-ketoglutarate transmembrane transporter activity
Gene Name
SLC22A6
Uniprot ID
Q4U2R8
Uniprot Name
Solute carrier family 22 member 6
Molecular Weight
61815.78 Da
References
  1. FDA Approved Drug Products: Tembexa (brincidofovir) for oral administration [Link]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
Functions as an organic anion/dicarboxylate exchanger that couples organic anion uptake indirectly to the sodium gradient (PubMed:14586168, PubMed:15644426, PubMed:15846473, PubMed:16455804, PubMed:31553721). Transports organic anions such as estrone 3-sulfate (E1S) and urate in exchange for dicarboxylates such as glutarate or ketoglutarate (2-oxoglutarate) (PubMed:14586168, PubMed:15846473, PubMed:15864504, PubMed:22108572, PubMed:23832370). Plays an important role in the excretion of endogenous and exogenous organic anions, especially from the kidney and the brain (PubMed:11306713, PubMed:14586168, PubMed:15846473). E1S transport is pH- and chloride-dependent and may also involve E1S/cGMP exchange (PubMed:26377792). Responsible for the transport of prostaglandin E2 (PGE2) and prostaglandin F2(alpha) (PGF2(alpha)) in the basolateral side of the renal tubule (PubMed:11907186). Involved in the transport of neuroactive tryptophan metabolites kynurenate and xanthurenate (PubMed:22108572, PubMed:23832370). Functions as a biopterin transporters involved in the uptake and the secretion of coenzymes tetrahydrobiopterin (BH4), dihydrobiopterin (BH2) and sepiapterin to urine, thereby determining baseline levels of blood biopterins (PubMed:28534121). May be involved in the basolateral transport of steviol, a metabolite of the popular sugar substitute stevioside (PubMed:15644426). May participate in the detoxification/ renal excretion of drugs and xenobiotics, such as the histamine H(2)-receptor antagonists fexofenadine and cimetidine, the antibiotic benzylpenicillin (PCG), the anionic herbicide 2,4-dichloro-phenoxyacetate (2,4-D), the diagnostic agent p-aminohippurate (PAH), the antiviral acyclovir (ACV), and the mycotoxin ochratoxin (OTA), by transporting these exogenous organic anions across the cell membrane in exchange for dicarboxylates such as 2-oxoglutarate (PubMed:11669456, PubMed:15846473, PubMed:16455804). Contributes to the renal uptake of potent uremic toxins (indoxyl sulfate (IS), indole acetate (IA), hippurate/N-benzoylglycine (HA) and 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF)), pravastatin, PCG, E1S and dehydroepiandrosterone sulfate (DHEAS), and is partly involved in the renal uptake of temocaprilat (an angiotensin-converting enzyme (ACE) inhibitor) (PubMed:14675047). May contribute to the release of cortisol in the adrenals (PubMed:15864504). Involved in one of the detoxification systems on the choroid plexus (CP), removes substrates such as E1S or taurocholate (TC), PCG, 2,4-D and PAH, from the cerebrospinal fluid (CSF) to the blood for eventual excretion in urine and bile (By similarity). Also contributes to the uptake of several other organic compounds such as the prostanoids prostaglandin E(2) and prostaglandin F(2-alpha), L-carnitine, and the therapeutic drugs allopurinol, 6-mercaptopurine (6-MP) and 5-fluorouracil (5-FU) (By similarity). Mediates the transport of PAH, PCG, and the statins pravastatin and pitavastatin, from the cerebrum into the blood circulation across the blood-brain barrier (BBB). In summary, plays a role in the efflux of drugs and xenobiotics, helping reduce their undesired toxicological effects on the body (By similarity)
Specific Function
Organic anion transmembrane transporter activity
Gene Name
SLC22A8
Uniprot ID
Q8TCC7
Uniprot Name
Organic anion transporter 3
Molecular Weight
59855.585 Da
References
  1. FDA Approved Drug Products: Tembexa (brincidofovir) for oral administration [Link]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
Catalyzes the transport of the major hydrophobic bile salts, such as taurine and glycine-conjugated cholic acid across the canalicular membrane of hepatocytes in an ATP-dependent manner, therefore participates in hepatic bile acid homeostasis and consequently to lipid homeostasis through regulation of biliary lipid secretion in a bile salts dependent manner (PubMed:15791618, PubMed:16332456, PubMed:18985798, PubMed:19228692, PubMed:20010382, PubMed:20398791, PubMed:22262466, PubMed:24711118, PubMed:29507376, PubMed:32203132). Transports taurine-conjugated bile salts more rapidly than glycine-conjugated bile salts (PubMed:16332456). Also transports non-bile acid compounds, such as pravastatin and fexofenadine in an ATP-dependent manner and may be involved in their biliary excretion (PubMed:15901796, PubMed:18245269)
Specific Function
Abc-type bile acid transporter activity
Gene Name
ABCB11
Uniprot ID
O95342
Uniprot Name
Bile salt export pump
Molecular Weight
146405.83 Da
References
  1. FDA Approved Drug Products: Tembexa (brincidofovir) for oral administration [Link]

Drug created at October 20, 2016 21:29 / Updated at August 26, 2024 19:23