Tubocurarine

Overview

DrugBank ID
DB01199
Type
Small Molecule
US Approved
NO
Other Approved
YES
Clinical Trials
Phase 0
0
Phase 1
0
Phase 2
0
Phase 3
0
Phase 4
0

Identification

Generic Name
Tubocurarine
DrugBank Accession Number
DB01199
Background

Tubocurarine is a non-depolarizing neuromuscular blocking agent and the first identified curare alkaloid.1 Curare is one of the names used to describe plant-derived poisons used by indigenous South Americans to coat the tips of hunting arrows and darts, which were typically derived from plants of the genera Chondrodendron and Strychnos.1 Tubocurarine is a benzylisoquinoline derivative and shares this structural backbone with a number of plant-derived alkaloids, including morphine and papaverine.2 It was first isolated by Harold King in 1935 and was used clinically to induce neuromuscular blockade during surgeries, particularly those involving the abdomen.4 Tubocurarine's clinical use was limited by its relatively long duration of action (30-60 minutes)4 and a number of significant side effects.6 Safer and more pharmacokinetically favorable non-depolarizing neuromuscular blockers, such as rocuronium, have largely replaced the use of tubocurarine in the clinical setting.6

Type
Small Molecule
Groups
Approved
Structure
Weight
Average: 609.7312
Monoisotopic: 609.296462054
Chemical Formula
C37H41N2O6
Synonyms
  • (+)-tubocurarine
  • 7',12'-dihydroxy-6,6'-dimethoxy-2,2',2'-trimethyltubocuraranium
  • d-tubocurarine
  • Tubocurarin
  • Tubocurarine
  • Tubocurarinum

Pharmacology

Indication

Not Available

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Not Available

Mechanism of action

Tubocurarine exerts its neuromuscular blocking effects via inhibition of acetylcholine (ACh) activity.1 It exerts a sort of reversible competitive antagonistic effect at post-synaptic nicotinic receptors, reducing the probability of activation via ACh by repeatedly associating and dissociating from these receptors - in doing so, tubocurarine prevents depolarization of the affected nerves. This mechanism distinguishes tubocurarine and similars from other neuromuscular blocking agents and is the reason they are referred to as "non-depolarizing neuromuscular blockers".1

TargetActionsOrganism
ANeuronal acetylcholine receptor subunit alpha-2
antagonist
Humans
A5-hydroxytryptamine receptor 3A
antagonist
Humans
UAcetylcholinesterase
inhibitor
Humans
UNeuronal acetylcholine receptor subunit alpha-7Not AvailableHumans
Absorption

Not Available

Volume of distribution

Not Available

Protein binding

Not Available

Metabolism
Not Available
Route of elimination

Not Available

Half-life

1-2 hours

Clearance

Not Available

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

Not Available

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
1,2-BenzodiazepineThe risk or severity of CNS depression can be increased when Tubocurarine is combined with 1,2-Benzodiazepine.
AcebutololTubocurarine may increase the bradycardic activities of Acebutolol.
AcetazolamideThe risk or severity of CNS depression can be increased when Acetazolamide is combined with Tubocurarine.
AcetophenazineThe risk or severity of CNS depression can be increased when Acetophenazine is combined with Tubocurarine.
AcetylcholineThe risk or severity of adverse effects can be increased when Tubocurarine is combined with Acetylcholine.
Food Interactions
Not Available

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
Product Ingredients
IngredientUNIICASInChI Key
Tubocurarine chloride pentahydrate900961Z8VR6989-98-6WMIZITXEJNQAQK-GGDSLZADSA-N
International/Other Brands
Tubarine
Brand Name Prescription Products
NameDosageStrengthRouteLabellerMarketing StartMarketing EndRegionImage
Tubocurarine Chloride Inj 3mg/mlSolution3 mg / mLIntravenousAbbott1951-12-312008-06-06Canada flag
Tubocurarine Chloride Inj 3mg/ml USPSolution3 mg / mLIntramuscular; IntravenousAbbott1985-12-312008-06-06Canada flag

Categories

ATC Codes
M03AA02 — Tubocurarine
Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as diarylethers. These are organic compounds containing the dialkyl ether functional group, with the formula ROR', where R and R' are aryl groups.
Kingdom
Organic compounds
Super Class
Organic oxygen compounds
Class
Organooxygen compounds
Sub Class
Ethers
Direct Parent
Diarylethers
Alternative Parents
Tetrahydroisoquinolines / Anisoles / Aralkylamines / Alkyl aryl ethers / 1-hydroxy-2-unsubstituted benzenoids / Tetraalkylammonium salts / Trialkylamines / Oxacyclic compounds / Azacyclic compounds / Organopnictogen compounds
show 3 more
Substituents
1-hydroxy-2-unsubstituted benzenoid / Alkyl aryl ether / Amine / Anisole / Aralkylamine / Aromatic heteropolycyclic compound / Azacycle / Benzenoid / Diaryl ether / Hydrocarbon derivative
show 12 more
Molecular Framework
Aromatic heteropolycyclic compounds
External Descriptors
benzylisoquinoline alkaloid (CHEBI:9774) / Isoquinoline alkaloids (C07547)
Affected organisms
  • Humans and other mammals

Chemical Identifiers

UNII
W9YXS298BM
CAS number
57-95-4
InChI Key
JFJZZMVDLULRGK-URLMMPGGSA-O
InChI
InChI=1S/C37H40N2O6/c1-38-14-12-24-19-32(42-4)33-21-27(24)28(38)16-22-6-9-26(10-7-22)44-37-35-25(20-34(43-5)36(37)41)13-15-39(2,3)29(35)17-23-8-11-30(40)31(18-23)45-33/h6-11,18-21,28-29H,12-17H2,1-5H3,(H-,40,41)/p+1/t28-,29+/m0/s1
IUPAC Name
(1S,16R)-9,21-dihydroxy-10,25-dimethoxy-15,15,30-trimethyl-7,23-dioxa-15,30-diazaheptacyclo[22.6.2.2^{3,6}.1^{8,12}.1^{18,22}.0^{27,31}.0^{16,34}]hexatriaconta-3,5,8(34),9,11,18(33),19,21,24,26,31,35-dodecaen-15-ium
SMILES
[H][C@@]12CC3=CC=C(OC4=C5C(CC[N+](C)(C)[C@]5([H])CC5=CC(OC6=C(OC)C=C(CCN1C)C2=C6)=C(O)C=C5)=CC(OC)=C4O)C=C3

References

General References
  1. Bowman WC: Neuromuscular block. Br J Pharmacol. 2006 Jan;147 Suppl 1:S277-86. doi: 10.1038/sj.bjp.0706404. [Article]
  2. Singla D, Sharma A, Kaur J, Panwar B, Raghava GP: BIAdb: a curated database of benzylisoquinoline alkaloids. BMC Pharmacol. 2010 Mar 5;10:4. doi: 10.1186/1471-2210-10-4. [Article]
  3. Matteo RS, Lieberman IG, Salanitre E, McDaniel DD, Diaz J: Distribution, elimination, and action of d-tubocurarine in neonates, infants, children, and adults. Anesth Analg. 1984 Sep;63(9):799-804. [Article]
  4. Huang L, Sang CN, Desai MS: A Chronology for the Identification and Disclosure of Adverse Effects of Succinylcholine. J Anesth Hist. 2019 Jul;5(3):65-84. doi: 10.1016/j.janh.2018.07.003. Epub 2018 Jul 29. [Article]
  5. Ball C, Westhorpe R: Muscle relaxants--d-tubocurarine. Anaesth Intensive Care. 2005 Aug;33(4):431. doi: 10.1177/0310057X0503300401. [Article]
  6. Bevan DR: Newer neuromuscular blocking agents. Pharmacol Toxicol. 1994 Jan;74(1):3-9. doi: 10.1111/j.1600-0773.1994.tb01065.x. [Article]
Human Metabolome Database
HMDB0015330
KEGG Compound
C07547
PubChem Compound
6000
PubChem Substance
46505279
ChemSpider
5778
BindingDB
50366799
RxNav
10917
ChEBI
9774
ChEMBL
CHEMBL339427
ZINC
ZINC000003978083
Therapeutic Targets Database
DAP000351
PharmGKB
PA451811
Wikipedia
Tubocurarine_chloride
MSDS
Download (73.2 KB)

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns

Pharmacoeconomics

Manufacturers
Not Available
Packagers
  • Hospira Inc.
Dosage Forms
FormRouteStrength
SolutionIntravenous3 mg / mL
SolutionIntramuscular; Intravenous3 mg / mL
Prices
Unit descriptionCostUnit
Tubocurarine cl 3 mg/ml vial0.37USD ml
DrugBank does not sell nor buy drugs. Pricing information is supplied for informational purposes only.
Patents
Not Available

Properties

State
Solid
Experimental Properties
Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.000323 mg/mLALOGPS
logP3.12ALOGPS
logP3.23Chemaxon
logS-6.3ALOGPS
pKa (Strongest Acidic)8.54Chemaxon
pKa (Strongest Basic)7.98Chemaxon
Physiological Charge2Chemaxon
Hydrogen Acceptor Count5Chemaxon
Hydrogen Donor Count2Chemaxon
Polar Surface Area80.62 Å2Chemaxon
Rotatable Bond Count2Chemaxon
Refractivity187.06 m3·mol-1Chemaxon
Polarizability67.43 Å3Chemaxon
Number of Rings7Chemaxon
Bioavailability1Chemaxon
Rule of FiveNoChemaxon
Ghose FilterNoChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleNoChemaxon
Predicted ADMET Features
PropertyValueProbability
Human Intestinal Absorption-0.9757
Blood Brain Barrier+0.7287
Caco-2 permeable+0.6869
P-glycoprotein substrateSubstrate0.8917
P-glycoprotein inhibitor INon-inhibitor0.8855
P-glycoprotein inhibitor IINon-inhibitor0.8385
Renal organic cation transporterNon-inhibitor0.6081
CYP450 2C9 substrateNon-substrate0.8397
CYP450 2D6 substrateNon-substrate0.6012
CYP450 3A4 substrateSubstrate0.6597
CYP450 1A2 substrateNon-inhibitor0.9365
CYP450 2C9 inhibitorNon-inhibitor0.948
CYP450 2D6 inhibitorNon-inhibitor0.9231
CYP450 2C19 inhibitorNon-inhibitor0.9136
CYP450 3A4 inhibitorNon-inhibitor0.9284
CYP450 inhibitory promiscuityLow CYP Inhibitory Promiscuity0.9794
Ames testNon AMES toxic0.5666
CarcinogenicityNon-carcinogens0.9195
BiodegradationNot ready biodegradable0.9401
Rat acute toxicity2.6331 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.8786
hERG inhibition (predictor II)Non-inhibitor0.5444
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397)

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted GC-MS Spectrum - GC-MSPredicted GC-MSsplash10-052f-0000091000-3781da48d16d597964cc
MS/MS Spectrum - Linear Ion Trap , positiveLC-MS/MSsplash10-03di-0000090000-3b12a16109f25ee30930
MS/MS Spectrum - Linear Ion Trap , positiveLC-MS/MSsplash10-03di-0000090000-7ed720c5e8c5ce8facd3
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-251.2456291
predicted
DarkChem Lite v0.1.0
[M-H]-250.9698291
predicted
DarkChem Lite v0.1.0
[M-H]-245.9191291
predicted
DarkChem Lite v0.1.0
[M-H]-240.99449
predicted
DeepCCS 1.0 (2019)
[M+H]+246.8450291
predicted
DarkChem Lite v0.1.0
[M+H]+251.3768291
predicted
DarkChem Lite v0.1.0
[M+H]+245.8143291
predicted
DarkChem Lite v0.1.0
[M+H]+242.81938
predicted
DeepCCS 1.0 (2019)
[M+Na]+247.2929291
predicted
DarkChem Lite v0.1.0
[M+Na]+252.7068291
predicted
DarkChem Lite v0.1.0
[M+Na]+245.2690291
predicted
DarkChem Lite v0.1.0
[M+Na]+248.42522
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Antagonist
General Function
After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane
Specific Function
acetylcholine receptor activity
Gene Name
CHRNA2
Uniprot ID
Q15822
Uniprot Name
Neuronal acetylcholine receptor subunit alpha-2
Molecular Weight
59764.82 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [Article]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [Article]
  3. Wenningmann I, Dilger JP: The kinetics of inhibition of nicotinic acetylcholine receptors by (+)-tubocurarine and pancuronium. Mol Pharmacol. 2001 Oct;60(4):790-6. [Article]
  4. Nishimura K, Kitamura Y, Taniguchi T, Agata K: Analysis of motor function modulated by cholinergic neurons in planarian Dugesia japonica. Neuroscience. 2010 Jun 16;168(1):18-30. doi: 10.1016/j.neuroscience.2010.03.038. Epub 2010 Mar 23. [Article]
  5. Jonsson Fagerlund M, Dabrowski M, Eriksson LI: Pharmacological characteristics of the inhibition of nondepolarizing neuromuscular blocking agents at human adult muscle nicotinic acetylcholine receptor. Anesthesiology. 2009 Jun;110(6):1244-52. doi: 10.1097/ALN.0b013e31819fade3. [Article]
  6. Liu M, Dilger JP: Synergy between pairs of competitive antagonists at adult human muscle acetylcholine receptors. Anesth Analg. 2008 Aug;107(2):525-33. doi: 10.1213/ane.0b013e31817b4469. [Article]
  7. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]
  8. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Antagonist
General Function
Forms serotonin (5-hydroxytryptamine/5-HT3)-activated cation-selective channel complexes, which when activated cause fast, depolarizing responses in neurons
Specific Function
excitatory extracellular ligand-gated monoatomic ion channel activity
Gene Name
HTR3A
Uniprot ID
P46098
Uniprot Name
5-hydroxytryptamine receptor 3A
Molecular Weight
55279.835 Da
References
  1. Hefft S, Hulo S, Bertrand D, Muller D: Synaptic transmission at nicotinic acetylcholine receptors in rat hippocampal organotypic cultures and slices. J Physiol. 1999 Mar 15;515 ( Pt 3):769-76. [Article]
  2. Yan D, White MM: Interaction of d-tubocurarine analogs with mutant 5-HT(3) receptors. Neuropharmacology. 2002 Sep;43(3):367-73. [Article]
  3. Yan D, Meyer JK, White MM: Mapping residues in the ligand-binding domain of the 5-HT(3) receptor onto d-tubocurarine structure. Mol Pharmacol. 2006 Aug;70(2):571-8. Epub 2006 May 24. [Article]
  4. Peters JA, Malone HM, Lambert JJ: Antagonism of 5-HT3 receptor mediated currents in murine N1E-115 neuroblastoma cells by (+)-tubocurarine. Neurosci Lett. 1990 Mar 2;110(1-2):107-12. [Article]
  5. Emerit MB, Riad M, Fattaccini CM, Hamon M: Characteristics of [14C]guanidinium accumulation in NG 108-15 cells exposed to serotonin 5-HT3 receptor ligands and substance P. J Neurochem. 1993 Jun;60(6):2059-67. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Hydrolyzes rapidly the acetylcholine neurotransmitter released into the synaptic cleft allowing to terminate the signal transduction at the neuromuscular junction. Role in neuronal apoptosis
Specific Function
acetylcholine binding
Gene Name
ACHE
Uniprot ID
P22303
Uniprot Name
Acetylcholinesterase
Molecular Weight
67795.525 Da
References
  1. Radic Z, Taylor P: The influence of peripheral site ligands on the reaction of symmetric and chiral organophosphates with wildtype and mutant acetylcholinesterases. Chem Biol Interact. 1999 May 14;119-120:111-7. [Article]
  2. Golicnik M, Fournier D, Stojan J: Acceleration of Drosophila melanogaster acetylcholinesterase methanesulfonylation: peripheral ligand D-tubocurarine enhances the affinity for small methanesulfonylfluoride. Chem Biol Interact. 2002 Feb 20;139(2):145-57. [Article]
  3. Radic Z, Taylor P: Peripheral site ligands accelerate inhibition of acetylcholinesterase by neutral organophosphates. J Appl Toxicol. 2001 Dec;21 Suppl 1:S13-4. [Article]
  4. Gupta RC, Dettbarn WD: Potential of memantine, D-tubocurarine, and atropine in preventing acute toxic myopathy induced by organophosphate nerve agents: soman, sarin, tabun and VX. Neurotoxicology. 1992 Fall;13(3):649-61. [Article]
  5. Bianchi DA, Hirschmann GS, Theoduloz C, Bracca AB, Kaufman TS: Synthesis of tricyclic analogs of stephaoxocanidine and their evaluation as acetylcholinesterase inhibitors. Bioorg Med Chem Lett. 2005 Jun 2;15(11):2711-5. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The channel is blocked by alpha-bungarotoxin
Specific Function
acetylcholine binding
Gene Name
CHRNA7
Uniprot ID
P36544
Uniprot Name
Neuronal acetylcholine receptor subunit alpha-7
Molecular Weight
56448.925 Da
References
  1. Briggs CA, McKenna DG, Monteggia LM, Touma E, Roch JM, Arneric SP, Gopalakrishnan M, Sullivan JP: Gain of function mutation of the alpha7 nicotinic receptor: distinct pharmacology of the human alpha7V274T variant. Eur J Pharmacol. 1999 Feb 5;366(2-3):301-8. [Article]

Enzymes

Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Substrate
General Function
Esterase with broad substrate specificity. Contributes to the inactivation of the neurotransmitter acetylcholine. Can degrade neurotoxic organophosphate esters
Specific Function
acetylcholinesterase activity
Gene Name
BCHE
Uniprot ID
P06276
Uniprot Name
Cholinesterase
Molecular Weight
68417.575 Da
References
  1. Aronson JK (2016). Meyler's Side Effects of Drugs: The International Encyclopedia of Adverse Drug Reactions and Interactions (16th ed.). Amsterdam : Elsevier Science. [ISBN:9780444537164]

Transporters

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
Electrogenic voltage-dependent transporter that mediates the transport of a variety of organic cations such as endogenous bioactive amines, cationic drugs and xenobiotics (PubMed:11388889, PubMed:11408531, PubMed:12439218, PubMed:12719534, PubMed:15389554, PubMed:16263091, PubMed:16272756, PubMed:16581093, PubMed:19536068, PubMed:21128598, PubMed:23680637, PubMed:24961373, PubMed:34040533, PubMed:9187257, PubMed:9260930, PubMed:9655880). Functions as a pH- and Na(+)-independent, bidirectional transporter (By similarity). Cation cellular uptake or release is driven by the electrochemical potential (i.e. membrane potential and concentration gradient) and substrate selectivity (By similarity). Hydrophobicity is a major requirement for recognition in polyvalent substrates and inhibitors (By similarity). Primarily expressed at the basolateral membrane of hepatocytes and proximal tubules and involved in the uptake and disposition of cationic compounds by hepatic and renal clearance from the blood flow (By similarity). Most likely functions as an uptake carrier in enterocytes contributing to the intestinal elimination of organic cations from the systemic circulation (PubMed:16263091). Transports endogenous monoamines such as N-1-methylnicotinamide (NMN), guanidine, histamine, neurotransmitters dopamine, serotonin and adrenaline (PubMed:12439218, PubMed:24961373, PubMed:35469921, PubMed:9260930). Also transports natural polyamines such as spermidine, agmatine and putrescine at low affinity, but relatively high turnover (PubMed:21128598). Involved in the hepatic uptake of vitamin B1/thiamine, hence regulating hepatic lipid and energy metabolism (PubMed:24961373). Mediates the bidirectional transport of acetylcholine (ACh) at the apical membrane of ciliated cell in airway epithelium, thereby playing a role in luminal release of ACh from bronchial epithelium (PubMed:15817714). Transports dopaminergic neuromodulators cyclo(his-pro) and salsolinol with lower efficency (PubMed:17460754). Also capable of transporting non-amine endogenous compounds such as prostaglandin E2 (PGE2) and prostaglandin F2-alpha (PGF2-alpha) (PubMed:11907186). May contribute to the transport of cationic compounds in testes across the blood-testis-barrier (Probable). Also involved in the uptake of xenobiotics tributylmethylammonium (TBuMA), quinidine, N-methyl-quinine (NMQ), N-methyl-quinidine (NMQD) N-(4,4-azo-n-pentyl)-quinuclidine (APQ), azidoprocainamide methoiodide (AMP), N-(4,4-azo-n-pentyl)-21-deoxyajmalinium (APDA) and 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP) (PubMed:11408531, PubMed:15389554, PubMed:35469921, PubMed:9260930)
Specific Function
(R)-carnitine transmembrane transporter activity
Gene Name
SLC22A1
Uniprot ID
O15245
Uniprot Name
Solute carrier family 22 member 1
Molecular Weight
61153.345 Da
References
  1. Busch AE, Quester S, Ulzheimer JC, Waldegger S, Gorboulev V, Arndt P, Lang F, Koepsell H: Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J Biol Chem. 1996 Dec 20;271(51):32599-604. [Article]
  2. Lozano E, Herraez E, Briz O, Robledo VS, Hernandez-Iglesias J, Gonzalez-Hernandez A, Marin JJ: Role of the plasma membrane transporter of organic cations OCT1 and its genetic variants in modern liver pharmacology. Biomed Res Int. 2013;2013:692071. doi: 10.1155/2013/692071. Epub 2013 Jul 31. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Electrogenic voltage-dependent transporter that mediates the transport of a variety of organic cations such as endogenous bioactive amines, cationic drugs and xenobiotics (PubMed:9260930, PubMed:9687576). Functions as a Na(+)-independent, bidirectional uniporter (PubMed:21128598, PubMed:9687576). Cation cellular uptake or release is driven by the electrochemical potential, i.e. membrane potential and concentration gradient (PubMed:15212162, PubMed:9260930, PubMed:9687576). However, may also engage electroneutral cation exchange when saturating concentrations of cation substrates are reached (By similarity). Predominantly expressed at the basolateral membrane of hepatocytes and proximal tubules and involved in the uptake and disposition of cationic compounds by hepatic and renal clearance from the blood flow (PubMed:15783073). Implicated in monoamine neurotransmitters uptake such as histamine, dopamine, adrenaline/epinephrine, noradrenaline/norepinephrine, serotonin and tyramine, thereby supporting a physiological role in the central nervous system by regulating interstitial concentrations of neurotransmitters (PubMed:16581093, PubMed:17460754, PubMed:9687576). Also capable of transporting dopaminergic neuromodulators cyclo(his-pro), salsolinol and N-methyl-salsolinol, thereby involved in the maintenance of dopaminergic cell integrity in the central nervous system (PubMed:17460754). Mediates the bidirectional transport of acetylcholine (ACh) at the apical membrane of ciliated cell in airway epithelium, thereby playing a role in luminal release of ACh from bronchial epithelium (PubMed:15817714). Also transports guanidine and endogenous monoamines such as vitamin B1/thiamine, creatinine and N-1-methylnicotinamide (NMN) (PubMed:12089365, PubMed:15212162, PubMed:17072098, PubMed:24961373, PubMed:9260930). Mediates the uptake and efflux of quaternary ammonium compound choline (PubMed:9260930). Mediates the bidirectional transport of polyamine agmatine and the uptake of polyamines putrescine and spermidine (PubMed:12538837, PubMed:21128598). Able to transport non-amine endogenous compounds such as prostaglandin E2 (PGE2) and prostaglandin F2-alpha (PGF2-alpha) (PubMed:11907186). Also involved in the uptake of xenobiotic 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP) (PubMed:12395288, PubMed:16394027). May contribute to regulate the transport of organic compounds in testis across the blood-testis-barrier (Probable)
Specific Function
acetylcholine transmembrane transporter activity
Gene Name
SLC22A2
Uniprot ID
O15244
Uniprot Name
Solute carrier family 22 member 2
Molecular Weight
62579.99 Da
References
  1. Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, Baumann C, Lang F, Busch AE, Koepsell H: Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol. 1997 Jul;16(7):871-81. [Article]

Drug created at June 13, 2005 13:24 / Updated at November 06, 2024 19:59