Vemurafenib
Explore a selection of our essential drug information below, or:
Identification
- Summary
Vemurafenib is a kinase inhibitor used to treat patients with Erdheim-Chester Disease who have the BRAF V600 mutation, and melanoma in patients who have the BRAF V600E mutation.
- Brand Names
- Zelboraf
- Generic Name
- Vemurafenib
- DrugBank Accession Number
- DB08881
- Background
Vemurafenib is a competitive kinase inhibitor with activity against BRAF kinase with mutations like V600E.2 It exerts its function by binding to the ATP-binding domain of the mutant BRAF.3 Vemurafenib was co-developed by Roche and Plexxikon and it obtained its FDA approval on August 17, 2011, under the company Hoffmann La Roche. After approval, Roche in collaboration with Genentech launched a broad development program. 8
- Type
- Small Molecule
- Groups
- Approved
- Structure
- Weight
- Average: 489.922
Monoisotopic: 489.072546264 - Chemical Formula
- C23H18ClF2N3O3S
- Synonyms
- Vemurafenib
- Vémurafénib
- Vemurafenibum
- External IDs
- PLX-4032
- PLX4032
- RG-7204
- RG7204
- RO-51-85426
- RO-5185426
- RO5185426
Pharmacology
- Indication
Vemurafenib is approved since 2011 for the treatment of metastatic melanoma with a mutation on BRAF in the valine located in the exon 15 at codon 600, this mutation is denominated as V600E.3 The V600E mutation, a substitution of glutamic acid for valine, accounts for 54% of the cases of cutaneous melanoma.4 Vemurafenib approval was extended in 2017, for its use as a treatment of adult patients with Erdheim-Chester Disease whose cancer cells present BRAF V600 mutation.9 Erdheim-Chester disease is an extremely rare histiocyte cell disorder that affects large bones, large vessels, central nervous system, as well as, skin and lungs. It is reported an association of Erdheim-Chester disease and V600E mutation.5
Reduce drug development failure ratesBuild, train, & validate machine-learning modelswith evidence-based and structured datasets.Build, train, & validate predictive machine-learning models with structured datasets.- Associated Conditions
Indication Type Indication Combined Product Details Approval Level Age Group Patient Characteristics Dose Form Treatment of Metastatic melanoma •••••••••••• Treatment of Metastatic melanoma ••• ••••• Treatment of Unresectable melanoma •••••••••••• Treatment of Refractory erdheim-chester disease ••• ••••• Treatment of Refractory non-small cell lung cancer ••• ••••• - Contraindications & Blackbox Warnings
- Prevent Adverse Drug Events TodayTap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.Avoid life-threatening adverse drug events with our Clinical API
- Pharmacodynamics
BRAF activation results in cell growth, proliferation, and metastasis. BRAF is an intermediary molecule in MAPK whose activation depends on ERK activation, elevation of cyclin D1 and cellular proliferation. The mutation V600E produces a constitutively form of BRAF. Vemurafenib has been shown to reduce all activation markers related to BRAF; in clinical trials, vemurafenib treatment showed a reduction of cytoplasmic phosphorylated ERK and a cell proliferation driven by Ki-67. Studies also reported decrease in MAPK-related metabolic activity.3 All the different reports indicate thet Vemurafenib generates an almost complete inhibition of the MAPK pathway.
- Mechanism of action
Vemurafenib is an orally available inhibitor of mutated BRAF-serine-threonine kinase. Vemurafenif is a small molecule that interacts as a competitive inhibitor of the mutated species of BRAF. It is especially potent against the BRAF V600E mutation. Vemurafenib blocks downstream processes to inhibit tumour growth and eventually trigger apoptosis. Vemurafenib does not have antitumour effects against melanoma cell lines with the wild-type BRAF mutation.10
Target Actions Organism ASerine/threonine-protein kinase B-raf inhibitorHumans - Absorption
Vemurafenib is well absorbed after oral administration.6 Peak concentrations are reached in 3 hours when an oral dose of 960 mg twice daily for 15 days has been given to patients. In the same conditions, Vemurafenib presents a Cmax of 62 mcg/ml and AUC of 601 mcg h/ml.Label It is unknown how food affects the absorption of vemurafenib. It presents an accumulation ratio of 7.36 after repeating doses of 960 mg 10
- Volume of distribution
The estimation of the volume of distribution for Vemurafenib is 106 L.7
- Protein binding
Vemurafenib highly binds to plasma proteins where >99% of the administered dose will be found protein bound to serum albumin and alpha-1 acid glycoprotein.7
- Metabolism
Vemurafenib is metabolized by CYP3A4 and the metabolites make up 5% of the components in plasma. The parent compound makes up for the remaining 95%.7
Hover over products below to view reaction partners
- Route of elimination
Analysis showed that 94% of administered Vemurafenib is excreted via feces and 1% is excreted by urine.7
- Half-life
The elimination half-life of Vemurafenib is estimated to be 57 hours (range of 30-120 hours).7
- Clearance
The total body clearance is 31 L/day.7
- Adverse Effects
- Improve decision support & research outcomesWith structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!Improve decision support & research outcomes with our structured adverse effects data.
- Toxicity
In the few toxicity reports, it has been shown an increased in the development of cutaneous squamous cell carcinomas or acceleration in pre-existant tumor growth.Label
- Pathways
- Not Available
- Pharmacogenomic Effects/ADRs
- Not Available
Interactions
- Drug Interactions
- This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
Drug Interaction Integrate drug-drug
interactions in your softwareAbametapir The serum concentration of Vemurafenib can be increased when it is combined with Abametapir. Abatacept The metabolism of Vemurafenib can be increased when combined with Abatacept. Abemaciclib The serum concentration of Abemaciclib can be increased when it is combined with Vemurafenib. Abrocitinib The serum concentration of Vemurafenib can be increased when it is combined with Abrocitinib. Acalabrutinib The metabolism of Acalabrutinib can be increased when combined with Vemurafenib. - Food Interactions
- Do not take with or immediately after a high-fat meal. Taking vemurafenib with a high-fat meal may increase the AUC and Cmax by approximately 5 fold and 2.5 fold, respectively.
- Exercise caution with grapefruit products. Grapefruit inhibits the CYP3A4 metabolism of vemurafenib, which may increase its serum concentration.
- Exercise caution with St. John's Wort. This herb induces the CYP3A4 metabolism of vemurafenib and may reduce its serum concentration.
- Limit caffeine intake. Vemurafenib inhibits CYP1A2, which may increase the serum levels and adverse effects of caffeine.
- Take with or without food.
Products
- Drug product information from 10+ global regionsOur datasets provide approved product information including:dosage, form, labeller, route of administration, and marketing period.Access drug product information from over 10 global regions.
- Brand Name Prescription Products
Name Dosage Strength Route Labeller Marketing Start Marketing End Region Image Zelboraf Tablet, film coated 240 mg Oral Roche Registration Gmb H 2016-09-08 Not applicable EU Zelboraf Tablet 240 mg Oral Hoffmann La Roche 2012-03-05 Not applicable Canada Zelboraf Tablet, film coated 240 mg/1 Oral Genentech, Inc. 2011-08-17 Not applicable US
Categories
- ATC Codes
- G01AE10 — Combinations of sulfonamides
- G01AE — Sulfonamides
- G01A — ANTIINFECTIVES AND ANTISEPTICS, EXCL. COMBINATIONS WITH CORTICOSTEROIDS
- G01 — GYNECOLOGICAL ANTIINFECTIVES AND ANTISEPTICS
- G — GENITO URINARY SYSTEM AND SEX HORMONES
- Drug Categories
- Amides
- Antineoplastic Agents
- Antineoplastic and Immunomodulating Agents
- B-Raf serine-threonine kinase (BRAF) inhibitors
- BCRP/ABCG2 Inhibitors
- BCRP/ABCG2 Substrates
- Cytochrome P-450 CYP1A2 Inhibitors
- Cytochrome P-450 CYP1A2 Inhibitors (moderate)
- Cytochrome P-450 CYP2B6 Inducers
- Cytochrome P-450 CYP2B6 Inducers (strength unknown)
- Cytochrome P-450 CYP2C8 Inhibitors
- Cytochrome P-450 CYP2C8 Inhibitors (strength unknown)
- Cytochrome P-450 CYP2C9 Inhibitors
- Cytochrome P-450 CYP2C9 Inhibitors (strength unknown)
- Cytochrome P-450 CYP2D6 Inhibitors
- Cytochrome P-450 CYP2D6 Inhibitors (weak)
- Cytochrome P-450 CYP3A Inducers
- Cytochrome P-450 CYP3A Substrates
- Cytochrome P-450 CYP3A4 Inducers
- Cytochrome P-450 CYP3A4 Inducers (strength unknown)
- Cytochrome P-450 CYP3A4 Substrates
- Cytochrome P-450 CYP3A4 Substrates with a Narrow Therapeutic Index
- Cytochrome P-450 Enzyme Inducers
- Cytochrome P-450 Enzyme Inhibitors
- Cytochrome P-450 Substrates
- Drugs causing inadvertant photosensitivity
- Enzyme Inhibitors
- Genito Urinary System and Sex Hormones
- Gynecological Antiinfectives and Antiseptics
- Heterocyclic Compounds, Fused-Ring
- Highest Risk QTc-Prolonging Agents
- Indoles
- Kinase Inhibitor
- Narrow Therapeutic Index Drugs
- P-glycoprotein inhibitors
- P-glycoprotein substrates
- P-glycoprotein substrates with a Narrow Therapeutic Index
- Photosensitizing Agents
- Protein Kinase Inhibitors
- QTc Prolonging Agents
- Sulfonamides
- Sulfones
- Sulfur Compounds
- Tyrosine Kinase Inhibitors
- Chemical TaxonomyProvided by Classyfire
- Description
- This compound belongs to the class of organic compounds known as aryl-phenylketones. These are aromatic compounds containing a ketone substituted by one aryl group, and a phenyl group.
- Kingdom
- Organic compounds
- Super Class
- Organic oxygen compounds
- Class
- Organooxygen compounds
- Sub Class
- Carbonyl compounds
- Direct Parent
- Aryl-phenylketones
- Alternative Parents
- Phenylpyridines / Sulfanilides / Pyrrolopyridines / Benzoyl derivatives / Chlorobenzenes / Fluorobenzenes / Organosulfonamides / Organic sulfonamides / Aryl chlorides / Aryl fluorides show 12 more
- Substituents
- 3-phenylpyridine / Aminosulfonyl compound / Aromatic heteropolycyclic compound / Aryl chloride / Aryl fluoride / Aryl halide / Aryl-phenylketone / Azacycle / Benzenoid / Benzoyl show 27 more
- Molecular Framework
- Aromatic heteropolycyclic compounds
- External Descriptors
- organofluorine compound, sulfonamide, organochlorine compound, pyrrolopyridine (CHEBI:63637)
- Affected organisms
- Humans and other mammals
Chemical Identifiers
- UNII
- 207SMY3FQT
- CAS number
- 918504-65-1
- InChI Key
- GPXBXXGIAQBQNI-UHFFFAOYSA-N
- InChI
- InChI=1S/C23H18ClF2N3O3S/c1-2-9-33(31,32)29-19-8-7-18(25)20(21(19)26)22(30)17-12-28-23-16(17)10-14(11-27-23)13-3-5-15(24)6-4-13/h3-8,10-12,29H,2,9H2,1H3,(H,27,28)
- IUPAC Name
- N-{3-[5-(4-chlorophenyl)-1H-pyrrolo[2,3-b]pyridine-3-carbonyl]-2,4-difluorophenyl}propane-1-sulfonamide
- SMILES
- CCCS(=O)(=O)NC1=C(F)C(C(=O)C2=CNC3=NC=C(C=C23)C2=CC=C(Cl)C=C2)=C(F)C=C1
References
- General References
- Jordan EJ, Kelly CM: Vemurafenib for the treatment of melanoma. Expert Opin Pharmacother. 2012 Dec;13(17):2533-43. doi: 10.1517/14656566.2012.737780. Epub 2012 Oct 24. [Article]
- Kim G, McKee AE, Ning YM, Hazarika M, Theoret M, Johnson JR, Xu QC, Tang S, Sridhara R, Jiang X, He K, Roscoe D, McGuinn WD, Helms WS, Russell AM, Miksinski SP, Zirkelbach JF, Earp J, Liu Q, Ibrahim A, Justice R, Pazdur R: FDA approval summary: vemurafenib for treatment of unresectable or metastatic melanoma with the BRAFV600E mutation. Clin Cancer Res. 2014 Oct 1;20(19):4994-5000. doi: 10.1158/1078-0432.CCR-14-0776. Epub 2014 Aug 5. [Article]
- Luke JJ, Hodi FS: Vemurafenib and BRAF inhibition: a new class of treatment for metastatic melanoma. Clin Cancer Res. 2012 Jan 1;18(1):9-14. doi: 10.1158/1078-0432.CCR-11-2197. Epub 2011 Nov 14. [Article]
- Schirosi L, Strippoli S, Gaudio F, Graziano G, Popescu O, Guida M, Simone G, Mangia A: Is immunohistochemistry of BRAF V600E useful as a screening tool and during progression disease of melanoma patients? BMC Cancer. 2016 Nov 18;16(1):905. [Article]
- Stempel JM, Bustamante Alvarez JG, Carpio AM, Mittal V, Dourado C: Erdheim-Chester disease, moving away from the orphan diseases: A case report. Respir Med Case Rep. 2016 Dec 3;20:55-58. eCollection 2017. [Article]
- Zhang W, Heinzmann D, Grippo JF: Clinical Pharmacokinetics of Vemurafenib. Clin Pharmacokinet. 2017 Mar 2. doi: 10.1007/s40262-017-0523-7. [Article]
- Goldinger SM, Rinderknecht J, Dummer R, Kuhn FP, Yang KH, Lee L, Ayala RC, Racha J, Geng W, Moore D, Liu M, Joe AK, Bazan SP, Grippo JF: A single-dose mass balance and metabolite-profiling study of vemurafenib in patients with metastatic melanoma. Pharmacol Res Perspect. 2015 Mar;3(2):e00113. doi: 10.1002/prp2.113. [Article]
- Roche news [Link]
- FDA News and Events [Link]
- FDA Vemurafenib application [Link]
- External Links
- KEGG Drug
- D09996
- PubChem Compound
- 42611257
- PubChem Substance
- 175427131
- ChemSpider
- 24747352
- BindingDB
- 50396483
- 1147220
- ChEBI
- 63637
- ChEMBL
- CHEMBL1229517
- ZINC
- ZINC000052509366
- PharmGKB
- PA165946873
- PDBe Ligand
- 032
- RxList
- RxList Drug Page
- Drugs.com
- Drugs.com Drug Page
- Wikipedia
- Vemurafenib
- PDB Entries
- 3og7 / 4rzv / 5hes
- FDA label
- Download (304 KB)
- MSDS
- Download (51 KB)
Clinical Trials
- Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package Phase Status Purpose Conditions Count Start Date Why Stopped 100+ additional columns Unlock 175K+ rows when you subscribe.View sample dataNot Available Active Not Recruiting Treatment Thyroid Carcinoma 1 somestatus stop reason just information to hide Not Available Completed Not Available Melanoma 2 somestatus stop reason just information to hide Not Available Completed Not Available Metastatic Melanoma 1 somestatus stop reason just information to hide Not Available Completed Diagnostic Advanced Solid Tumors / Cancer 1 somestatus stop reason just information to hide Not Available Recruiting Not Available Advanced Solid Tumors / Metastatic Cancer / Solid Tumors 1 somestatus stop reason just information to hide
Pharmacoeconomics
- Manufacturers
- Not Available
- Packagers
- Not Available
- Dosage Forms
Form Route Strength Tablet Oral 240 mg Tablet, film coated Oral 240 mg/1 Tablet, film coated Oral Tablet, film coated Oral 240 mg - Prices
- Not Available
- Patents
Patent Number Pediatric Extension Approved Expires (estimated) Region US8470818 No 2013-06-25 2026-08-02 US US8143271 No 2012-03-27 2026-06-21 US US7863288 No 2011-01-04 2029-06-20 US US7504509 No 2009-03-17 2026-10-22 US US8741920 No 2014-06-03 2030-07-27 US US9447089 No 2016-09-20 2032-06-06 US
Properties
- State
- Solid
- Experimental Properties
Property Value Source melting point (°C) 272°C MSDS water solubility <1 mg/mL MSDS logP 5.1 MSDS Caco2 permeability 2.9E-06 FDA review pKa 7.1 Royal Soc Chem - Predicted Properties
Property Value Source Water Solubility 0.000362 mg/mL ALOGPS logP 4.95 ALOGPS logP 4.62 Chemaxon logS -6.1 ALOGPS pKa (Strongest Acidic) 8.87 Chemaxon pKa (Strongest Basic) 2.3 Chemaxon Physiological Charge 0 Chemaxon Hydrogen Acceptor Count 4 Chemaxon Hydrogen Donor Count 2 Chemaxon Polar Surface Area 91.92 Å2 Chemaxon Rotatable Bond Count 6 Chemaxon Refractivity 121.97 m3·mol-1 Chemaxon Polarizability 48.1 Å3 Chemaxon Number of Rings 4 Chemaxon Bioavailability 1 Chemaxon Rule of Five Yes Chemaxon Ghose Filter No Chemaxon Veber's Rule No Chemaxon MDDR-like Rule Yes Chemaxon - Predicted ADMET Features
Property Value Probability Human Intestinal Absorption + 1.0 Blood Brain Barrier + 0.745 Caco-2 permeable - 0.6222 P-glycoprotein substrate Non-substrate 0.6215 P-glycoprotein inhibitor I Non-inhibitor 0.5884 P-glycoprotein inhibitor II Non-inhibitor 0.699 Renal organic cation transporter Non-inhibitor 0.864 CYP450 2C9 substrate Non-substrate 0.7628 CYP450 2D6 substrate Non-substrate 0.8038 CYP450 3A4 substrate Substrate 0.5645 CYP450 1A2 substrate Inhibitor 0.5762 CYP450 2C9 inhibitor Inhibitor 0.5987 CYP450 2D6 inhibitor Non-inhibitor 0.7329 CYP450 2C19 inhibitor Inhibitor 0.6508 CYP450 3A4 inhibitor Inhibitor 0.7061 CYP450 inhibitory promiscuity High CYP Inhibitory Promiscuity 0.9553 Ames test Non AMES toxic 0.6323 Carcinogenicity Non-carcinogens 0.7229 Biodegradation Not ready biodegradable 1.0 Rat acute toxicity 2.5179 LD50, mol/kg Not applicable hERG inhibition (predictor I) Weak inhibitor 0.6688 hERG inhibition (predictor II) Non-inhibitor 0.5302
Spectra
- Mass Spec (NIST)
- Not Available
- Spectra
- Chromatographic Properties
Collision Cross Sections (CCS)
Adduct CCS Value (Å2) Source type Source [M-H]- 208.75143 predictedDeepCCS 1.0 (2019) [M+H]+ 211.14699 predictedDeepCCS 1.0 (2019) [M+Na]+ 217.05952 predictedDeepCCS 1.0 (2019)
Targets
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Inhibitor
- General Function
- Protein kinase involved in the transduction of mitogenic signals from the cell membrane to the nucleus (Probable). Phosphorylates MAP2K1, and thereby activates the MAP kinase signal transduction pathway (PubMed:21441910, PubMed:29433126). Phosphorylates PFKFB2 (PubMed:36402789). May play a role in the postsynaptic responses of hippocampal neurons (PubMed:1508179)
- Specific Function
- ATP binding
- Gene Name
- BRAF
- Uniprot ID
- P15056
- Uniprot Name
- Serine/threonine-protein kinase B-raf
- Molecular Weight
- 84436.135 Da
References
- Jordan EJ, Kelly CM: Vemurafenib for the treatment of melanoma. Expert Opin Pharmacother. 2012 Dec;13(17):2533-43. doi: 10.1517/14656566.2012.737780. Epub 2012 Oct 24. [Article]
Enzymes
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Inhibitor
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:19965576, PubMed:9435160). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:19965576, PubMed:9435160). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:11555828, PubMed:12865317). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2 (PubMed:11555828, PubMed:12865317). Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). May act as a major enzyme for all-trans retinoic acid biosynthesis in the liver. Catalyzes two successive oxidative transformation of all-trans retinol to all-trans retinal and then to the active form all-trans retinoic acid (PubMed:10681376). Primarily catalyzes stereoselective epoxidation of the last double bond of polyunsaturated fatty acids (PUFA), displaying a strong preference for the (R,S) stereoisomer (PubMed:19965576). Catalyzes bisallylic hydroxylation and omega-1 hydroxylation of PUFA (PubMed:9435160). May also participate in eicosanoids metabolism by converting hydroperoxide species into oxo metabolites (lipoxygenase-like reaction, NADPH-independent) (PubMed:21068195). Plays a role in the oxidative metabolism of xenobiotics. Catalyzes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin (PubMed:14725854). Metabolizes caffeine via N3-demethylation (Probable)
- Specific Function
- aromatase activity
- Gene Name
- CYP1A2
- Uniprot ID
- P05177
- Uniprot Name
- Cytochrome P450 1A2
- Molecular Weight
- 58406.915 Da
References
- Jordan EJ, Kelly CM: Vemurafenib for the treatment of melanoma. Expert Opin Pharmacother. 2012 Dec;13(17):2533-43. doi: 10.1517/14656566.2012.737780. Epub 2012 Oct 24. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Inhibitor
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of fatty acids, steroids and retinoids (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:19965576, PubMed:20972997). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 20-hydroxyeicosatetraenoic acid ethanolamide (20-HETE-EA) and 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:18698000, PubMed:21289075). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Catalyzes the oxidative transformations of all-trans retinol to all-trans retinal, a precursor for the active form all-trans-retinoic acid (PubMed:10681376). Also involved in the oxidative metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants
- Specific Function
- anandamide 11,12 epoxidase activity
- Gene Name
- CYP2D6
- Uniprot ID
- P10635
- Uniprot Name
- Cytochrome P450 2D6
- Molecular Weight
- 55768.94 Da
References
- Jordan EJ, Kelly CM: Vemurafenib for the treatment of melanoma. Expert Opin Pharmacother. 2012 Dec;13(17):2533-43. doi: 10.1517/14656566.2012.737780. Epub 2012 Oct 24. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- SubstrateInducer
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981)
- Specific Function
- 1,8-cineole 2-exo-monooxygenase activity
- Gene Name
- CYP3A4
- Uniprot ID
- P08684
- Uniprot Name
- Cytochrome P450 3A4
- Molecular Weight
- 57342.67 Da
References
- Jordan EJ, Kelly CM: Vemurafenib for the treatment of melanoma. Expert Opin Pharmacother. 2012 Dec;13(17):2533-43. doi: 10.1517/14656566.2012.737780. Epub 2012 Oct 24. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Inhibitor
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids and steroids (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:15766564, PubMed:19965576, PubMed:7574697, PubMed:9866708). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Exhibits low catalytic activity for the formation of catechol estrogens from 17beta-estradiol (E2) and estrone (E1), namely 2-hydroxy E1 and E2 (PubMed:12865317). Catalyzes bisallylic hydroxylation and hydroxylation with double-bond migration of polyunsaturated fatty acids (PUFA) (PubMed:9435160, PubMed:9866708). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan (PubMed:25994031)
- Specific Function
- (R)-limonene 6-monooxygenase activity
- Gene Name
- CYP2C9
- Uniprot ID
- P11712
- Uniprot Name
- Cytochrome P450 2C9
- Molecular Weight
- 55627.365 Da
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Inhibitor
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Primarily catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) with a preference for the last double bond (PubMed:15766564, PubMed:19965576, PubMed:7574697). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes all trans-retinoic acid toward its 4-hydroxylated form (PubMed:11093772). Displays 16-alpha hydroxylase activity toward estrogen steroid hormones, 17beta-estradiol (E2) and estrone (E1) (PubMed:14559847). Plays a role in the oxidative metabolism of xenobiotics. It is the principal enzyme responsible for the metabolism of the anti-cancer drug paclitaxel (taxol) (PubMed:26427316)
- Specific Function
- arachidonic acid epoxygenase activity
- Gene Name
- CYP2C8
- Uniprot ID
- P10632
- Uniprot Name
- Cytochrome P450 2C8
- Molecular Weight
- 55824.275 Da
References
- Vemurafenib FDA Label [File]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Inducer
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of endocannabinoids and steroids (PubMed:12865317, PubMed:21289075). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the epoxidation of double bonds of arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:21289075). Hydroxylates steroid hormones, including testosterone at C-16 and estrogens at C-2 (PubMed:12865317, PubMed:21289075). Plays a role in the oxidative metabolism of xenobiotics, including plant lipids and drugs (PubMed:11695850, PubMed:22909231). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850)
- Specific Function
- anandamide 11,12 epoxidase activity
- Gene Name
- CYP2B6
- Uniprot ID
- P20813
- Uniprot Name
- Cytochrome P450 2B6
- Molecular Weight
- 56277.81 Da
References
- Vemurafenib EMA Label [File]
Carriers
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Substrate
- General Function
- Binds water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs (Probable). Its main function is the regulation of the colloidal osmotic pressure of blood (Probable). Major zinc transporter in plasma, typically binds about 80% of all plasma zinc (PubMed:19021548). Major calcium and magnesium transporter in plasma, binds approximately 45% of circulating calcium and magnesium in plasma (By similarity). Potentially has more than two calcium-binding sites and might additionally bind calcium in a non-specific manner (By similarity). The shared binding site between zinc and calcium at residue Asp-273 suggests a crosstalk between zinc and calcium transport in the blood (By similarity). The rank order of affinity is zinc > calcium > magnesium (By similarity). Binds to the bacterial siderophore enterobactin and inhibits enterobactin-mediated iron uptake of E.coli from ferric transferrin, and may thereby limit the utilization of iron and growth of enteric bacteria such as E.coli (PubMed:6234017). Does not prevent iron uptake by the bacterial siderophore aerobactin (PubMed:6234017)
- Specific Function
- antioxidant activity
- Gene Name
- ALB
- Uniprot ID
- P02768
- Uniprot Name
- Albumin
- Molecular Weight
- 69365.94 Da
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Substrate
- General Function
- Functions as a transport protein in the blood stream. Binds various ligands in the interior of its beta-barrel domain. Also binds synthetic drugs and influences their distribution and availability in the body. Appears to function in modulating the activity of the immune system during the acute-phase reaction
- Specific Function
- Not Available
- Gene Name
- ORM1
- Uniprot ID
- P02763
- Uniprot Name
- Alpha-1-acid glycoprotein 1
- Molecular Weight
- 23539.43 Da
Transporters
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- SubstrateInhibitor
- General Function
- Mediates export of organic anions and drugs from the cytoplasm (PubMed:10064732, PubMed:11114332, PubMed:16230346, PubMed:7961706, PubMed:9281595). Mediates ATP-dependent transport of glutathione and glutathione conjugates, leukotriene C4, estradiol-17-beta-o-glucuronide, methotrexate, antiviral drugs and other xenobiotics (PubMed:10064732, PubMed:11114332, PubMed:16230346, PubMed:7961706, PubMed:9281595). Confers resistance to anticancer drugs by decreasing accumulation of drug in cells, and by mediating ATP- and GSH-dependent drug export (PubMed:9281595). Hydrolyzes ATP with low efficiency (PubMed:16230346). Catalyzes the export of sphingosine 1-phosphate from mast cells independently of their degranulation (PubMed:17050692). Participates in inflammatory response by allowing export of leukotriene C4 from leukotriene C4-synthezing cells (By similarity). Mediates ATP-dependent, GSH-independent cyclic GMP-AMP (cGAMP) export (PubMed:36070769). Thus, by limiting intracellular cGAMP concentrations negatively regulates the cGAS-STING pathway (PubMed:36070769)
- Specific Function
- ABC-type glutathione S-conjugate transporter activity
- Gene Name
- ABCC1
- Uniprot ID
- P33527
- Uniprot Name
- Multidrug resistance-associated protein 1
- Molecular Weight
- 171589.5 Da
References
- Mittapalli RK, Vaidhyanathan S, Sane R, Elmquist WF: Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on the brain distribution of a novel BRAF inhibitor: vemurafenib (PLX4032). J Pharmacol Exp Ther. 2012 Jul;342(1):33-40. doi: 10.1124/jpet.112.192195. Epub 2012 Mar 27. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- SubstrateInhibitor
- General Function
- Broad substrate specificity ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes a wide variety of physiological compounds, dietary toxins and xenobiotics from cells (PubMed:11306452, PubMed:12958161, PubMed:19506252, PubMed:20705604, PubMed:28554189, PubMed:30405239, PubMed:31003562). Involved in porphyrin homeostasis, mediating the export of protoporphyrin IX (PPIX) from both mitochondria to cytosol and cytosol to extracellular space, it also functions in the cellular export of heme (PubMed:20705604, PubMed:23189181). Also mediates the efflux of sphingosine-1-P from cells (PubMed:20110355). Acts as a urate exporter functioning in both renal and extrarenal urate excretion (PubMed:19506252, PubMed:20368174, PubMed:22132962, PubMed:31003562, PubMed:36749388). In kidney, it also functions as a physiological exporter of the uremic toxin indoxyl sulfate (By similarity). Also involved in the excretion of steroids like estrone 3-sulfate/E1S, 3beta-sulfooxy-androst-5-en-17-one/DHEAS, and other sulfate conjugates (PubMed:12682043, PubMed:28554189, PubMed:30405239). Mediates the secretion of the riboflavin and biotin vitamins into milk (By similarity). Extrudes pheophorbide a, a phototoxic porphyrin catabolite of chlorophyll, reducing its bioavailability (By similarity). Plays an important role in the exclusion of xenobiotics from the brain (Probable). It confers to cells a resistance to multiple drugs and other xenobiotics including mitoxantrone, pheophorbide, camptothecin, methotrexate, azidothymidine, and the anthracyclines daunorubicin and doxorubicin, through the control of their efflux (PubMed:11306452, PubMed:12477054, PubMed:15670731, PubMed:18056989, PubMed:31254042). In placenta, it limits the penetration of drugs from the maternal plasma into the fetus (By similarity). May play a role in early stem cell self-renewal by blocking differentiation (By similarity)
- Specific Function
- ABC-type xenobiotic transporter activity
- Gene Name
- ABCG2
- Uniprot ID
- Q9UNQ0
- Uniprot Name
- Broad substrate specificity ATP-binding cassette transporter ABCG2
- Molecular Weight
- 72313.47 Da
References
- Mittapalli RK, Vaidhyanathan S, Sane R, Elmquist WF: Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on the brain distribution of a novel BRAF inhibitor: vemurafenib (PLX4032). J Pharmacol Exp Ther. 2012 Jul;342(1):33-40. doi: 10.1124/jpet.112.192195. Epub 2012 Mar 27. [Article]
- Funck-Brentano E, Alvarez JC, Longvert C, Abe E, Beauchet A, Funck-Brentano C, Saiag P: Plasma vemurafenib concentrations in advanced BRAFV600mut melanoma patients: impact on tumour response and tolerance. Ann Oncol. 2015 Jul;26(7):1470-5. doi: 10.1093/annonc/mdv189. Epub 2015 Apr 21. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- SubstrateInhibitor
- General Function
- Translocates drugs and phospholipids across the membrane (PubMed:2897240, PubMed:35970996, PubMed:8898203, PubMed:9038218). Catalyzes the flop of phospholipids from the cytoplasmic to the exoplasmic leaflet of the apical membrane. Participates mainly to the flop of phosphatidylcholine, phosphatidylethanolamine, beta-D-glucosylceramides and sphingomyelins (PubMed:8898203). Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells (PubMed:2897240, PubMed:35970996, PubMed:9038218)
- Specific Function
- ABC-type xenobiotic transporter activity
- Gene Name
- ABCB1
- Uniprot ID
- P08183
- Uniprot Name
- ATP-dependent translocase ABCB1
- Molecular Weight
- 141477.255 Da
Drug created at May 20, 2013 06:41 / Updated at October 03, 2024 22:14