Resveratrol

Identification

Generic Name
Resveratrol
DrugBank Accession Number
DB02709
Background

Resveratrol (3,5,4'-trihydroxystilbene) is a polyphenolic phytoalexin. It is a stilbenoid, a derivate of stilbene, and is produced in plants with the help of the enzyme stilbene synthase. It exists as cis-(Z) and trans-(E) isomers. The trans- form can undergo isomerisation to the cis- form when heated or exposed to ultraviolet irradiation. In a 2004 issue of Science, Dr. Sinclair of Harvard University said resveratrol is not an easy molecule to protect from oxidation. It has been claimed that it is readily degraded by exposure to light, heat, and oxygen. However, studies find that Trans-resveratrol undergoes negligible oxidation in normal atmosphere at room temperature.

Type
Small Molecule
Groups
Investigational
Structure
Weight
Average: 228.2433
Monoisotopic: 228.07864425
Chemical Formula
C14H12O3
Synonyms
  • (E)-5-(2-(4-hydroxyphenyl)ethenyl)-1,3-benzenediol(E)-5-(2-(4-hydroxyphenyl)ethenyl)-1,3-benzenediol
  • (E)-resveratrol
  • 3,4',5-trihydroxy-trans-stilbene
  • 3,4',5-trihydroxystilbene
  • 3,5,4'-trihydroxystilbene
  • 5-[(1E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol
  • 5-[(E)-2-(4-Hydroxyphenyl)-Ethenyl] Benzene-1,3 Diol
  • 5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol
  • 5-[(E)-2-(4-hydroxyphenyl)vinyl]benzene-1,3-diol
  • trans-resveratrol
External IDs
  • SRT 501
  • SRT-501
  • SRT501

Pharmacology

Indication

Being investigated for the treatment of Herpes labialis infections (cold sores).

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Resveratrol, a phytoalexin, has been found to inhibit herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) replication in a dose-dependent, reversible manner, although this is only one of its many pharmaceutical properties. In some countries where there is higher consumption of red wine, there appears to be a lower incidence of heart disease. Other benefits of resveratrol include its anti-inflammatory and antioxidant effects. In preclinical studies, Resveratrol has been found to have potential anticancer properties.

Mechanism of action

Resveratrol suppresses NF-kappaB (NF-kappaB) activation in HSV infected cells. Reports have indicated that HSV activates NF-kappaB during productive infection and this may be an essential aspect of its replication scheme [PMID: 9705914].

TargetActionsOrganism
ANAD-dependent protein deacetylase sirtuin-1
inhibitor
Humans
URibosyldihydronicotinamide dehydrogenase [quinone]Not AvailableHumans
UCasein kinase II subunit alphaNot AvailableHumans
UProstaglandin G/H synthase 1
inhibitor
Humans
UProstaglandin G/H synthase 2
inhibitor
Humans
UPolyunsaturated fatty acid lipoxygenase ALOX15Not AvailableHumans
UPolyunsaturated fatty acid 5-lipoxygenaseNot AvailableHumans
UAryl hydrocarbon receptorNot AvailableHumans
UPhosphatidylinositol 4-kinase type 2-betaNot AvailableHumans
UIntegrin alpha-5Not AvailableHumans
UIntegrin beta-3Not AvailableHumans
UAmyloid-beta precursor proteinNot AvailableHumans
UAlpha-synucleinNot AvailableHumans
UEstrogen receptorNot AvailableHumans
UMelatonin receptor type 1ANot AvailableHumans
UMelatonin receptor type 1BNot AvailableHumans
UC-type lectin domain family 14 member ANot AvailableHumans
UNuclear receptor subfamily 1 group I member 2Not AvailableHumans
UNuclear receptor subfamily 1 group I member 3Not AvailableHumans
USolute carrier family 2, facilitated glucose transporter member 1Not AvailableHumans
UCarbonyl reductase [NADPH] 1
inhibitor
Humans
UPeroxisome proliferator-activated receptor alphaNot AvailableHumans
UPeroxisome proliferator-activated receptor gammaNot AvailableHumans
URAC-alpha serine/threonine-protein kinase
inhibitor
Humans
UFar upstream element-binding protein 2Not AvailableHumans
UTyrosine--tRNA ligase, cytoplasmic
inhibitor
Humans
Absorption

High absorption but very low bioavailability.

Volume of distribution

Not Available

Protein binding

Strong affinity towards protein binding.

Metabolism

Hepatic. Rapidly metabolized and excreted.

Hover over products below to view reaction partners

Route of elimination

Not Available

Half-life

Not Available

Clearance

Not Available

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

Not Available

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
AbciximabThe risk or severity of bleeding can be increased when Resveratrol is combined with Abciximab.
AbrocitinibThe risk or severity of bleeding and thrombocytopenia can be increased when Resveratrol is combined with Abrocitinib.
AceclofenacThe risk or severity of bleeding can be increased when Aceclofenac is combined with Resveratrol.
AcemetacinThe risk or severity of bleeding can be increased when Acemetacin is combined with Resveratrol.
AcenocoumarolThe risk or severity of bleeding can be increased when Resveratrol is combined with Acenocoumarol.
Food Interactions
No interactions found.

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
Mixture Products
NameIngredientsDosageRouteLabellerMarketing StartMarketing EndRegionImage
AscuoliResveratrol (400 mg/1) + Nicotinamide Mononucleotide (500 mg/1) + White pepper (50 mg/1)LozengeOralHEALGROW INC2023-03-20Not applicableUS flag
AscuoliResveratrol (600 mg/1) + Nicotinamide Mononucleotide (500 mg/1) + White pepper (50 mg/1)CapsuleOralHEALGROW INC2023-03-20Not applicableUS flag
HerodianowResveratrol (400 mg/1) + Nicotinamide Mononucleotide (500 mg/1) + White pepper (50 mg/1)LozengeOralHEALGROW INC2023-09-30Not applicableUS flag
LiquidResveratrol (4.5 mg/30mL) + Hyaluronic acid (7.5 mg/30mL) + Nicotinamide (7.5 mg/30mL)LiquidCutaneousShantou Youjia E-Commerce Co., Ltd.2024-02-012024-12-31US flag
Lovita NMN 12000Resveratrol (85 mg/447mg) + Nicotinamide Mononucleotide (200 mg/447mg)Capsule, coatedOralACCOLADE PHARMA USA2023-06-01Not applicableUS flag
Unapproved/Other Products
NameIngredientsDosageRouteLabellerMarketing StartMarketing EndRegionImage
AscuoliResveratrol (600 mg/1) + Nicotinamide Mononucleotide (500 mg/1) + White pepper (50 mg/1)CapsuleOralHEALGROW INC2023-03-20Not applicableUS flag
AscuoliResveratrol (400 mg/1) + Nicotinamide Mononucleotide (500 mg/1) + White pepper (50 mg/1)LozengeOralHEALGROW INC2023-03-20Not applicableUS flag
Co-BalaminResveratrol (400 mg/1mg) + Folic acid (0.8 mg/1mg) + Mecobalamin (5 mg/1mg) + Ubiquinol (200 mg/1mg)CapsuleOralHome Aide Diagnostics, Inc.2015-08-01Not applicableUS flag
Co-VeratrolResveratrol (400 mg/1mg) + Folic acid (0.8 mg/1mg) + Mecobalamin (5 mg/1mg) + Ubiquinol (200 mg/1mg)CapsuleOralHome Aide Diagnostics, Inc.2015-08-012018-10-05US flag
DyzbacResveratrol (50 mg/1) + Ascorbic acid (125 mg/1) + Cholecalciferol (500 [iU]/1) + Leucovorin (1 mg/1) + Lipoic acid (150 mg/1) + Mecobalamin (1 mg/1) + Pyridoxal phosphate (12.5 mg/1) + Ubidecarenone (25 mg/1)TabletOralBasiem2015-11-052016-01-01US flag

Categories

Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as stilbenes. These are organic compounds containing a 1,2-diphenylethylene moiety. Stilbenes (C6-C2-C6 ) are derived from the common phenylpropene (C6-C3) skeleton building block. The introduction of one or more hydroxyl groups to a phenyl ring lead to stilbenoids.
Kingdom
Organic compounds
Super Class
Phenylpropanoids and polyketides
Class
Stilbenes
Sub Class
Not Available
Direct Parent
Stilbenes
Alternative Parents
Styrenes / Resorcinols / 1-hydroxy-4-unsubstituted benzenoids / 1-hydroxy-2-unsubstituted benzenoids / Organooxygen compounds / Hydrocarbon derivatives
Substituents
1-hydroxy-2-unsubstituted benzenoid / 1-hydroxy-4-unsubstituted benzenoid / Aromatic homomonocyclic compound / Benzenoid / Hydrocarbon derivative / Monocyclic benzene moiety / Organic oxygen compound / Organooxygen compound / Phenol / Resorcinol
Molecular Framework
Aromatic homomonocyclic compounds
External Descriptors
resveratrol (CHEBI:45713) / Diphenyl ethers, biphenyls, dibenzyls and stilbenes, Stilbenes (C03582) / Diphenyl ethers, biphenyls, dibenzyls and stilbenes (LMPK13090005)
Affected organisms
  • Humans and other mammals

Chemical Identifiers

UNII
Q369O8926L
CAS number
501-36-0
InChI Key
LUKBXSAWLPMMSZ-OWOJBTEDSA-N
InChI
InChI=1S/C14H12O3/c15-12-5-3-10(4-6-12)1-2-11-7-13(16)9-14(17)8-11/h1-9,15-17H/b2-1+
IUPAC Name
5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol
SMILES
OC1=CC=C(\C=C\C2=CC(O)=CC(O)=C2)C=C1

References

Synthesis Reference

Philippe Jeandet, Roger Bessis, Marielle Adrian, Jean-Claude Yvin, Jean-Marie Joubert, "Use of aluminium chloride as a resveratrol synthesis elicitor." U.S. Patent US6080701, issued August, 1991.

US6080701
General References
  1. Farina A, Ferranti C, Marra C: An improved synthesis of resveratrol. Nat Prod Res. 2006 Mar;20(3):247-52. [Article]
  2. Renaud S, Ruf JC: The French paradox: vegetables or wine. Circulation. 1994 Dec;90(6):3118-9. [Article]
  3. Wang Y, Catana F, Yang Y, Roderick R, van Breemen RB: An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine. J Agric Food Chem. 2002 Jan 30;50(3):431-5. [Article]
  4. Lyons MM, Yu C, Toma RB, Cho SY, Reiboldt W, Lee J, van Breemen RB: Resveratrol in raw and baked blueberries and bilberries. J Agric Food Chem. 2003 Sep 24;51(20):5867-70. [Article]
  5. Walle T, Hsieh F, DeLegge MH, Oatis JE Jr, Walle UK: High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos. 2004 Dec;32(12):1377-82. Epub 2004 Aug 27. [Article]
  6. Csaki C, Keshishzadeh N, Fischer K, Shakibaei M: Regulation of inflammation signalling by resveratrol in human chondrocytes in vitro. Biochem Pharmacol. 2008 Feb 1;75(3):677-87. Epub 2007 Sep 18. [Article]
  7. Docherty JJ, Fu MM, Stiffler BS, Limperos RJ, Pokabla CM, DeLucia AL: Resveratrol inhibition of herpes simplex virus replication. Antiviral Res. 1999 Oct;43(3):145-55. [Article]
  8. N' soukpoe-Kossi CN, St-Louis C, Beauregard M, Subirade M, Carpentier R, Hotchandani S, Tajmir-Riahi HA: Resveratrol binding to human serum albumin. J Biomol Struct Dyn. 2006 Dec;24(3):277-83. [Article]
Human Metabolome Database
HMDB0003747
KEGG Compound
C03582
PubChem Compound
445154
PubChem Substance
46504705
ChemSpider
392875
BindingDB
23926
RxNav
1000492
ChEBI
45713
ChEMBL
CHEMBL165
ZINC
ZINC000000006787
Therapeutic Targets Database
DNC001205
PharmGKB
PA165291838
PDBe Ligand
STL
Wikipedia
Resveratrol
PDB Entries
1cgz / 1dvs / 1sg0 / 1u0w / 1z1f / 2jiz / 2l98 / 2ydx / 3ckl / 3fts
show 27 more
MSDS
Download (16.6 KB)

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns
Not AvailableRecruitingTreatmentMucogingival Defects1somestatusstop reasonjust information to hide
4CompletedTreatmentAllergic Rhinitis (AR)1somestatusstop reasonjust information to hide
4CompletedTreatmentDepression1somestatusstop reasonjust information to hide
4CompletedTreatmentEndometriosis1somestatusstop reasonjust information to hide
4Unknown StatusTreatmentAcute Pancreatitis / Gastrointestinal Diseases1somestatusstop reasonjust information to hide

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage Forms
FormRouteStrength
LozengeOral
TabletOral
LiquidCutaneous
Capsule, coatedOral
CapsuleOral
Prices
Not Available
Patents
Not Available

Properties

State
Solid
Experimental Properties
PropertyValueSource
melting point (°C)254 °CPhysProp
Predicted Properties
PropertyValueSource
Water Solubility0.0688 mg/mLALOGPS
logP2.57ALOGPS
logP3.4Chemaxon
logS-3.5ALOGPS
pKa (Strongest Acidic)8.49Chemaxon
pKa (Strongest Basic)-6.2Chemaxon
Physiological Charge0Chemaxon
Hydrogen Acceptor Count3Chemaxon
Hydrogen Donor Count3Chemaxon
Polar Surface Area60.69 Å2Chemaxon
Rotatable Bond Count2Chemaxon
Refractivity67.46 m3·mol-1Chemaxon
Polarizability24.55 Å3Chemaxon
Number of Rings2Chemaxon
Bioavailability1Chemaxon
Rule of FiveYesChemaxon
Ghose FilterYesChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleNoChemaxon
Predicted ADMET Features
PropertyValueProbability
Human Intestinal Absorption+0.9952
Blood Brain Barrier+0.59
Caco-2 permeable+0.8915
P-glycoprotein substrateNon-substrate0.6501
P-glycoprotein inhibitor INon-inhibitor0.9266
P-glycoprotein inhibitor IINon-inhibitor0.9612
Renal organic cation transporterNon-inhibitor0.8634
CYP450 2C9 substrateNon-substrate0.7519
CYP450 2D6 substrateNon-substrate0.9288
CYP450 3A4 substrateNon-substrate0.7143
CYP450 1A2 substrateInhibitor0.9106
CYP450 2C9 inhibitorInhibitor0.7068
CYP450 2D6 inhibitorNon-inhibitor0.9226
CYP450 2C19 inhibitorInhibitor0.8052
CYP450 3A4 inhibitorInhibitor0.7539
CYP450 inhibitory promiscuityHigh CYP Inhibitory Promiscuity0.8559
Ames testNon AMES toxic0.8407
CarcinogenicityNon-carcinogens0.7825
BiodegradationNot ready biodegradable0.8499
Rat acute toxicity1.6791 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.8933
hERG inhibition (predictor II)Non-inhibitor0.9462
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397)

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
GC-MS Spectrum - GC-MS (3 TMS)GC-MSsplash10-0006-1853900000-4919511a11ec24935434
Predicted GC-MS Spectrum - GC-MSPredicted GC-MSsplash10-004i-0790000000-615dafbde185688e8755
GC-MS Spectrum - GC-MSGC-MSsplash10-0006-1853900000-4919511a11ec24935434
MS/MS Spectrum - ESI-TOF , NegativeLC-MS/MSsplash10-004i-0090000000-f9ff90d98488d6d05587
MS/MS Spectrum - ESI-TOF 50V, NegativeLC-MS/MSsplash10-004i-0090000000-f9ff90d98488d6d05587
MS/MS Spectrum - ESI-TOF 60V, NegativeLC-MS/MSsplash10-004i-0090000000-f9ff90d98488d6d05587
MS/MS Spectrum - ESI-TOF 20V, NegativeLC-MS/MSsplash10-004i-0590000000-4a9b53d6aad6ed8189d2
MS/MS Spectrum - ESI-TOF 40V, NegativeLC-MS/MSsplash10-004i-0590000000-4a9b53d6aad6ed8189d2
MS/MS Spectrum - ESI-TOF , NegativeLC-MS/MSsplash10-004i-0090000000-f9ff90d98488d6d05587
MS/MS Spectrum - ESI-TOF 50V, NegativeLC-MS/MSsplash10-014i-0900000000-79bf3bfcbb7bcdd0ffd2
MS/MS Spectrum - ESI-TOF 60V, NegativeLC-MS/MSsplash10-014i-0900000000-9340e3fe04d435cf8475
MS/MS Spectrum - ESI-TOF 20V, NegativeLC-MS/MSsplash10-004i-0590000000-4a9b53d6aad6ed8189d2
MS/MS Spectrum - ESI-TOF 40V, NegativeLC-MS/MSsplash10-00kf-0900000000-b0f6bf3388d96335d77e
LC-MS/MS Spectrum - LC-ESI-qTof , PositiveLC-MS/MSsplash10-004i-1890000000-5a90c0c5508894cb16af
LC-MS/MS Spectrum - LC-ESI-qTof , PositiveLC-MS/MSsplash10-014i-2910000000-e0183692948660939c19
LC-MS/MS Spectrum - LC-ESI-QTOF , negativeLC-MS/MSsplash10-004i-0090000000-d9def7cee71fb7a40786
LC-MS/MS Spectrum - LC-ESI-QTOF , negativeLC-MS/MSsplash10-004r-0970000000-f8c7ca07f27bfc1b8bda
LC-MS/MS Spectrum - LC-ESI-QTOF , negativeLC-MS/MSsplash10-0006-0900000000-b1333b06db343c38f529
LC-MS/MS Spectrum - LC-ESI-QTOF , negativeLC-MS/MSsplash10-014l-0900000000-c856c7fa9653868e5785
LC-MS/MS Spectrum - LC-ESI-QQ , negativeLC-MS/MSsplash10-004r-0950000000-8e44b9aa58ac75282058
LC-MS/MS Spectrum - LC-ESI-QQ , negativeLC-MS/MSsplash10-000f-0900000000-2b750fcfd933ce8809f2
LC-MS/MS Spectrum - LC-ESI-TOF , negativeLC-MS/MSsplash10-014i-0900000000-79bf3bfcbb7bcdd0ffd2
LC-MS/MS Spectrum - LC-ESI-TOF , negativeLC-MS/MSsplash10-014i-0900000000-9340e3fe04d435cf8475
LC-MS/MS Spectrum - LC-ESI-TOF , negativeLC-MS/MSsplash10-004i-0590000000-4a9b53d6aad6ed8189d2
LC-MS/MS Spectrum - LC-ESI-TOF , negativeLC-MS/MSsplash10-00kf-0900000000-b0f6bf3388d96335d77e
LC-MS/MS Spectrum - LC-ESI-QFT , positiveLC-MS/MSsplash10-004i-0390000000-f19a725fa516c1ccd06d
LC-MS/MS Spectrum - LC-ESI-QFT , positiveLC-MS/MSsplash10-0a4r-1900000000-12ac653b70e86d051e9a
LC-MS/MS Spectrum - LC-ESI-QFT , positiveLC-MS/MSsplash10-0a4l-3900000000-cddc9dc871ae0131587d
LC-MS/MS Spectrum - LC-ESI-QFT , positiveLC-MS/MSsplash10-0aov-4900000000-085c30542d4dbecc9a30
LC-MS/MS Spectrum - LC-ESI-QTOF , positiveLC-MS/MSsplash10-004i-0390000000-f8caace8d6c937282e65
LC-MS/MS Spectrum - LC-ESI-QTOF , positiveLC-MS/MSsplash10-052r-1900000000-d06e6e1c144b2d48b364
LC-MS/MS Spectrum - LC-ESI-QTOF , positiveLC-MS/MSsplash10-0aou-3900000000-bb14be278509155e8ce6
LC-MS/MS Spectrum - LC-ESI-QTOF , positiveLC-MS/MSsplash10-016r-8900000000-7a10869ce89fa2c7828f
LC-MS/MS Spectrum - LC-ESI-QTOF , positiveLC-MS/MSsplash10-004i-0290000000-9742e3e8991c1c0c270d
LC-MS/MS Spectrum - LC-ESI-QTOF , positiveLC-MS/MSsplash10-002r-0940000000-07826509d63ca5c6ed72
LC-MS/MS Spectrum - LC-ESI-QTOF , positiveLC-MS/MSsplash10-014i-0910000000-2cac03dc9e9b045fdf23
LC-MS/MS Spectrum - LC-ESI-ITFT , positiveLC-MS/MSsplash10-002r-0940000000-fb2be32a94602011c1b2
LC-MS/MS Spectrum - LC-ESI-ITFT , positiveLC-MS/MSsplash10-000i-0920000000-4b294faea28304389dcf
LC-MS/MS Spectrum - LC-ESI-ITFT , positiveLC-MS/MSsplash10-000i-0910000000-7cfbcea1e1b612e05a02
LC-MS/MS Spectrum - LC-ESI-ITFT , positiveLC-MS/MSsplash10-000i-0910000000-93888a6f43e37bc70298
MS/MS Spectrum - , positiveLC-MS/MSsplash10-004i-1890000000-5a90c0c5508894cb16af
MS/MS Spectrum - , positiveLC-MS/MSsplash10-014i-2910000000-e0183692948660939c19
MS/MS Spectrum - , positiveLC-MS/MSsplash10-0ar9-0910000000-b498b69c984c5f85498e
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-004i-0190000000-f8f69af0cb09def1c70e
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-004i-0090000000-63c69610ab9b746b0c36
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-004i-0940000000-c2286082997b6fa81fce
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-0a73-0940000000-dc467e9b3532ba957710
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-0f9y-3900000000-cdd36d2855c1b1f7b439
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-0006-2900000000-dbcf6650d6fa386f1f9c
Predicted 1H NMR Spectrum1D NMRNot Applicable
Predicted 13C NMR Spectrum1D NMRNot Applicable
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-160.9295539
predicted
DarkChem Lite v0.1.0
[M-H]-156.7025626
predicted
DarkChem Lite v0.1.0
[M-H]-168.5482539
predicted
DarkChem Lite v0.1.0
[M-H]-161.2263539
predicted
DarkChem Lite v0.1.0
[M-H]-155.36293
predicted
DeepCCS 1.0 (2019)
[M+H]+161.3666539
predicted
DarkChem Lite v0.1.0
[M+H]+164.967703
predicted
DarkChem Lite v0.1.0
[M+H]+171.6532539
predicted
DarkChem Lite v0.1.0
[M+H]+163.3543539
predicted
DarkChem Lite v0.1.0
[M+H]+157.72093
predicted
DeepCCS 1.0 (2019)
[M+Na]+160.8368539
predicted
DarkChem Lite v0.1.0
[M+Na]+162.6868732
predicted
DarkChem Lite v0.1.0
[M+Na]+169.7362539
predicted
DarkChem Lite v0.1.0
[M+Na]+161.9071539
predicted
DarkChem Lite v0.1.0
[M+Na]+163.81407
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metabolism, apoptosis and autophagy (PubMed:11672523, PubMed:12006491, PubMed:14976264, PubMed:14980222, PubMed:15126506, PubMed:15152190, PubMed:15205477, PubMed:15469825, PubMed:15692560, PubMed:16079181, PubMed:16166628, PubMed:16892051, PubMed:16998810, PubMed:17283066, PubMed:17290224, PubMed:17334224, PubMed:17505061, PubMed:17612497, PubMed:17620057, PubMed:17936707, PubMed:18203716, PubMed:18296641, PubMed:18662546, PubMed:18687677, PubMed:19188449, PubMed:19220062, PubMed:19364925, PubMed:19690166, PubMed:19934257, PubMed:20097625, PubMed:20100829, PubMed:20203304, PubMed:20375098, PubMed:20620956, PubMed:20670893, PubMed:20817729, PubMed:20955178, PubMed:21149730, PubMed:21245319, PubMed:21471201, PubMed:21504832, PubMed:21555002, PubMed:21698133, PubMed:21701047, PubMed:21775285, PubMed:21807113, PubMed:21841822, PubMed:21890893, PubMed:21947282, PubMed:22274616, PubMed:22918831, PubMed:24415752, PubMed:24824780, PubMed:29681526, PubMed:29765047, PubMed:30409912). Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression (PubMed:15469825). Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expression positively and negatively (PubMed:14976264, PubMed:14980222, PubMed:15152190). Serves as a sensor of the cytosolic ratio of NAD(+)/NADH which is altered by glucose deprivation and metabolic changes associated with caloric restriction (PubMed:15205477). Is essential in skeletal muscle cell differentiation and in response to low nutrients mediates the inhibitory effect on skeletal myoblast differentiation which also involves 5'-AMP-activated protein kinase (AMPK) and nicotinamide phosphoribosyltransferase (NAMPT) (By similarity). Component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes (PubMed:18485871). The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus (PubMed:18485871, PubMed:21504832). Deacetylates 'Lys-266' of SUV39H1, leading to its activation (PubMed:21504832). Inhibits skeletal muscle differentiation by deacetylating PCAF and MYOD1 (PubMed:19188449). Deacetylates H2A and 'Lys-26' of H1-4 (PubMed:15469825). Deacetylates 'Lys-16' of histone H4 (in vitro). Involved in NR0B2/SHP corepression function through chromatin remodeling: Recruited to LRH1 target gene promoters by NR0B2/SHP thereby stimulating histone H3 and H4 deacetylation leading to transcriptional repression (PubMed:20375098). Proposed to contribute to genomic integrity via positive regulation of telomere length; however, reports on localization to pericentromeric heterochromatin are conflicting (By similarity). Proposed to play a role in constitutive heterochromatin (CH) formation and/or maintenance through regulation of the available pool of nuclear SUV39H1 (PubMed:15469825, PubMed:18004385). Upon oxidative/metabolic stress decreases SUV39H1 degradation by inhibiting SUV39H1 polyubiquitination by MDM2 (PubMed:18004385, PubMed:21504832). This increase in SUV39H1 levels enhances SUV39H1 turnover in CH, which in turn seems to accelerate renewal of the heterochromatin which correlates with greater genomic integrity during stress response (PubMed:18004385, PubMed:21504832). Deacetylates 'Lys-382' of p53/TP53 and impairs its ability to induce transcription-dependent proapoptotic program and modulate cell senescence (PubMed:11672523, PubMed:12006491, PubMed:22542455). Deacetylates TAF1B and thereby represses rDNA transcription by the RNA polymerase I (By similarity). Deacetylates MYC, promotes the association of MYC with MAX and decreases MYC stability leading to compromised transformational capability (PubMed:19364925, PubMed:21807113). Deacetylates FOXO3 in response to oxidative stress thereby increasing its ability to induce cell cycle arrest and resistance to oxidative stress but inhibiting FOXO3-mediated induction of apoptosis transcriptional activity; also leading to FOXO3 ubiquitination and protesomal degradation (PubMed:14976264, PubMed:14980222, PubMed:21841822). Appears to have a similar effect on MLLT7/FOXO4 in regulation of transcriptional activity and apoptosis (PubMed:15126506). Deacetylates DNMT1; thereby impairs DNMT1 methyltransferase-independent transcription repressor activity, modulates DNMT1 cell cycle regulatory function and DNMT1-mediated gene silencing (PubMed:21947282). Deacetylates RELA/NF-kappa-B p65 thereby inhibiting its transactivating potential and augments apoptosis in response to TNF-alpha (PubMed:15152190). Deacetylates HIF1A, KAT5/TIP60, RB1 and HIC1 (PubMed:17283066, PubMed:17620057, PubMed:20100829, PubMed:20620956). Deacetylates FOXO1 resulting in its nuclear retention and enhancement of its transcriptional activity leading to increased gluconeogenesis in liver (PubMed:15692560). Inhibits E2F1 transcriptional activity and apoptotic function, possibly by deacetylation (PubMed:16892051). Involved in HES1- and HEY2-mediated transcriptional repression (PubMed:12535671). In cooperation with MYCN seems to be involved in transcriptional repression of DUSP6/MAPK3 leading to MYCN stabilization by phosphorylation at 'Ser-62' (PubMed:21698133). Deacetylates MEF2D (PubMed:16166628). Required for antagonist-mediated transcription suppression of AR-dependent genes which may be linked to local deacetylation of histone H3 (PubMed:17505061). Represses HNF1A-mediated transcription (By similarity). Required for the repression of ESRRG by CREBZF (PubMed:19690166). Deacetylates NR1H3 and NR1H2 and deacetylation of NR1H3 at 'Lys-434' positively regulates transcription of NR1H3:RXR target genes, promotes NR1H3 proteasomal degradation and results in cholesterol efflux; a promoter clearing mechanism after reach round of transcription is proposed (PubMed:17936707). Involved in lipid metabolism: deacetylates LPIN1, thereby inhibiting diacylglycerol synthesis (PubMed:20817729, PubMed:29765047). Implicated in regulation of adipogenesis and fat mobilization in white adipocytes by repression of PPARG which probably involves association with NCOR1 and SMRT/NCOR2 (By similarity). Deacetylates p300/EP300 and PRMT1 (By similarity). Deacetylates ACSS2 leading to its activation, and HMGCS1 deacetylation (PubMed:21701047). Involved in liver and muscle metabolism. Through deacetylation and activation of PPARGC1A is required to activate fatty acid oxidation in skeletal muscle under low-glucose conditions and is involved in glucose homeostasis (PubMed:23142079). Involved in regulation of PPARA and fatty acid beta-oxidation in liver. Involved in positive regulation of insulin secretion in pancreatic beta cells in response to glucose; the function seems to imply transcriptional repression of UCP2. Proposed to deacetylate IRS2 thereby facilitating its insulin-induced tyrosine phosphorylation. Deacetylates SREBF1 isoform SREBP-1C thereby decreasing its stability and transactivation in lipogenic gene expression (PubMed:17290224, PubMed:20817729). Involved in DNA damage response by repressing genes which are involved in DNA repair, such as XPC and TP73, deacetylating XRCC6/Ku70, and facilitating recruitment of additional factors to sites of damaged DNA, such as SIRT1-deacetylated NBN can recruit ATM to initiate DNA repair and SIRT1-deacetylated XPA interacts with RPA2 (PubMed:15205477, PubMed:16998810, PubMed:17334224, PubMed:17612497, PubMed:20670893, PubMed:21149730). Also involved in DNA repair of DNA double-strand breaks by homologous recombination and specifically single-strand annealing independently of XRCC6/Ku70 and NBN (PubMed:15205477, PubMed:17334224, PubMed:20097625). Promotes DNA double-strand breaks by mediating deacetylation of SIRT6 (PubMed:32538779). Transcriptional suppression of XPC probably involves an E2F4:RBL2 suppressor complex and protein kinase B (AKT) signaling. Transcriptional suppression of TP73 probably involves E2F4 and PCAF. Deacetylates WRN thereby regulating its helicase and exonuclease activities and regulates WRN nuclear translocation in response to DNA damage (PubMed:18203716). Deacetylates APEX1 at 'Lys-6' and 'Lys-7' and stimulates cellular AP endonuclease activity by promoting the association of APEX1 to XRCC1 (PubMed:19934257). Catalyzes deacetylation of ERCC4/XPF, thereby impairing interaction with ERCC1 and nucleotide excision repair (NER) (PubMed:32034146). Increases p53/TP53-mediated transcription-independent apoptosis by blocking nuclear translocation of cytoplasmic p53/TP53 and probably redirecting it to mitochondria. Deacetylates XRCC6/Ku70 at 'Lys-539' and 'Lys-542' causing it to sequester BAX away from mitochondria thereby inhibiting stress-induced apoptosis. Is involved in autophagy, presumably by deacetylating ATG5, ATG7 and MAP1LC3B/ATG8 (PubMed:18296641). Deacetylates AKT1 which leads to enhanced binding of AKT1 and PDK1 to PIP3 and promotes their activation (PubMed:21775285). Proposed to play role in regulation of STK11/LBK1-dependent AMPK signaling pathways implicated in cellular senescence which seems to involve the regulation of the acetylation status of STK11/LBK1. Can deacetylate STK11/LBK1 and thereby increase its activity, cytoplasmic localization and association with STRAD; however, the relevance of such activity in normal cells is unclear (PubMed:18687677, PubMed:20203304). In endothelial cells is shown to inhibit STK11/LBK1 activity and to promote its degradation. Deacetylates SMAD7 at 'Lys-64' and 'Lys-70' thereby promoting its degradation. Deacetylates CIITA and augments its MHC class II transactivation and contributes to its stability (PubMed:21890893). Deacetylates MECOM/EVI1 (PubMed:21555002). Deacetylates PML at 'Lys-487' and this deacetylation promotes PML control of PER2 nuclear localization (PubMed:22274616). During the neurogenic transition, represses selective NOTCH1-target genes through histone deacetylation in a BCL6-dependent manner and leading to neuronal differentiation. Regulates the circadian expression of several core clock genes, including BMAL1, RORC, PER2 and CRY1 and plays a critical role in maintaining a controlled rhythmicity in histone acetylation, thereby contributing to circadian chromatin remodeling (PubMed:18662546). Deacetylates BMAL1 and histones at the circadian gene promoters in order to facilitate repression by inhibitory components of the circadian oscillator (By similarity). Deacetylates PER2, facilitating its ubiquitination and degradation by the proteasome (By similarity). Protects cardiomyocytes against palmitate-induced apoptosis (By similarity). Deacetylates XBP1 isoform 2; deacetylation decreases protein stability of XBP1 isoform 2 and inhibits its transcriptional activity (PubMed:20955178). Deacetylates PCK1 and directs its activity toward phosphoenolpyruvate production promoting gluconeogenesis (PubMed:30193097). Involved in the CCAR2-mediated regulation of PCK1 and NR1D1 (PubMed:24415752). Deacetylates CTNB1 at 'Lys-49' (PubMed:24824780). In POMC (pro-opiomelanocortin) neurons, required for leptin-induced activation of PI3K signaling (By similarity). In addition to protein deacetylase activity, also acts as a protein-lysine deacylase by mediating protein depropionylation and decrotonylation (PubMed:28497810). Mediates depropionylation of Osterix (SP7) (By similarity). Catalyzes decrotonylation of histones; it however does not represent a major histone decrotonylase (PubMed:28497810). Deacetylates SOX9; promoting SOX9 nuclear localization and transactivation activity (By similarity). Involved in the regulation of centrosome duplication. Deacetylates CENATAC in G1 phase, allowing for SASS6 accumulation on the centrosome and subsequent procentriole assembly (PubMed:31722219). Deacetylates NDC80/HEC1 (PubMed:30409912)
Specific Function
Bhlh transcription factor binding
Gene Name
SIRT1
Uniprot ID
Q96EB6
Uniprot Name
NAD-dependent protein deacetylase sirtuin-1
Molecular Weight
81680.06 Da
References
  1. Lakshminarasimhan M, Rauh D, Schutkowski M, Steegborn C: Sirt1 activation by resveratrol is substrate sequence-selective. Aging (Albany NY). 2013 Mar;5(3):151-4. doi: 10.18632/aging.100542. [Article]
  2. Hubbard BP, Gomes AP, Dai H, Li J, Case AW, Considine T, Riera TV, Lee JE, E SY, Lamming DW, Pentelute BL, Schuman ER, Stevens LA, Ling AJ, Armour SM, Michan S, Zhao H, Jiang Y, Sweitzer SM, Blum CA, Disch JS, Ng PY, Howitz KT, Rolo AP, Hamuro Y, Moss J, Perni RB, Ellis JL, Vlasuk GP, Sinclair DA: Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science. 2013 Mar 8;339(6124):1216-9. doi: 10.1126/science.1231097. [Article]
  3. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
The enzyme apparently serves as a quinone reductase in connection with conjugation reactions of hydroquinones involved in detoxification pathways as well as in biosynthetic processes such as the vitamin K-dependent gamma-carboxylation of glutamate residues in prothrombin synthesis
Specific Function
Chloride ion binding
Gene Name
NQO2
Uniprot ID
P16083
Uniprot Name
Ribosyldihydronicotinamide dehydrogenase [quinone]
Molecular Weight
25918.4 Da
References
  1. Buryanovskyy L, Fu Y, Boyd M, Ma Y, Hsieh TC, Wu JM, Zhang Z: Crystal structure of quinone reductase 2 in complex with resveratrol. Biochemistry. 2004 Sep 14;43(36):11417-26. [Article]
  2. Wang Z, Hsieh TC, Zhang Z, Ma Y, Wu JM: Identification and purification of resveratrol targeting proteins using immobilized resveratrol affinity chromatography. Biochem Biophys Res Commun. 2004 Oct 22;323(3):743-9. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Catalytic subunit of a constitutively active serine/threonine-protein kinase complex that phosphorylates a large number of substrates containing acidic residues C-terminal to the phosphorylated serine or threonine (PubMed:11239457, PubMed:11704824, PubMed:16193064, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:19188443, PubMed:20545769, PubMed:20625391, PubMed:22017874, PubMed:22406621, PubMed:24962073, PubMed:30898438, PubMed:31439799). Regulates numerous cellular processes, such as cell cycle progression, apoptosis and transcription, as well as viral infection (PubMed:12631575, PubMed:19387551, PubMed:19387552). May act as a regulatory node which integrates and coordinates numerous signals leading to an appropriate cellular response (PubMed:12631575, PubMed:19387551, PubMed:19387552). During mitosis, functions as a component of the p53/TP53-dependent spindle assembly checkpoint (SAC) that maintains cyclin-B-CDK1 activity and G2 arrest in response to spindle damage (PubMed:11704824, PubMed:19188443). Also required for p53/TP53-mediated apoptosis, phosphorylating 'Ser-392' of p53/TP53 following UV irradiation (PubMed:11239457). Phosphorylates a number of DNA repair proteins in response to DNA damage, such as MDC1, MRE11, RAD9A, RAD51 and HTATSF1, promoting their recruitment to DNA damage sites (PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:20545769, PubMed:21482717, PubMed:22325354, PubMed:26811421, PubMed:28512243, PubMed:30898438, PubMed:35597237). Can also negatively regulate apoptosis (PubMed:16193064, PubMed:22184066). Phosphorylates the caspases CASP9 and CASP2 and the apoptotic regulator NOL3 (PubMed:16193064). Phosphorylation protects CASP9 from cleavage and activation by CASP8, and inhibits the dimerization of CASP2 and activation of CASP8 (PubMed:16193064). Phosphorylates YY1, protecting YY1 from cleavage by CASP7 during apoptosis (PubMed:22184066). Regulates transcription by direct phosphorylation of RNA polymerases I, II, III and IV (PubMed:12631575, PubMed:19387550, PubMed:19387551, PubMed:19387552, PubMed:23123191). Also phosphorylates and regulates numerous transcription factors including NF-kappa-B, STAT1, CREB1, IRF1, IRF2, ATF1, ATF4, SRF, MAX, JUN, FOS, MYC and MYB (PubMed:12631575, PubMed:19387550, PubMed:19387551, PubMed:19387552, PubMed:23123191). Phosphorylates Hsp90 and its co-chaperones FKBP4 and CDC37, which is essential for chaperone function (PubMed:19387550). Mediates sequential phosphorylation of FNIP1, promoting its gradual interaction with Hsp90, leading to activate both kinase and non-kinase client proteins of Hsp90 (PubMed:30699359). Regulates Wnt signaling by phosphorylating CTNNB1 and the transcription factor LEF1 (PubMed:19387549). Acts as an ectokinase that phosphorylates several extracellular proteins (PubMed:12631575, PubMed:19387550, PubMed:19387551, PubMed:19387552). During viral infection, phosphorylates various proteins involved in the viral life cycles of EBV, HSV, HBV, HCV, HIV, CMV and HPV (PubMed:12631575, PubMed:19387550, PubMed:19387551, PubMed:19387552). Phosphorylates PML at 'Ser-565' and primes it for ubiquitin-mediated degradation (PubMed:20625391, PubMed:22406621). Plays an important role in the circadian clock function by phosphorylating BMAL1 at 'Ser-90' which is pivotal for its interaction with CLOCK and which controls CLOCK nuclear entry (By similarity). Phosphorylates CCAR2 at 'Thr-454' in gastric carcinoma tissue (PubMed:24962073). Phosphorylates FMR1, promoting FMR1-dependent formation of a membraneless compartment (PubMed:30765518, PubMed:31439799)
Specific Function
Atp binding
Gene Name
CSNK2A1
Uniprot ID
P68400
Uniprot Name
Casein kinase II subunit alpha
Molecular Weight
45143.25 Da
References
  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Dual cyclooxygenase and peroxidase that plays an important role in the biosynthesis pathway of prostanoids, a class of C20 oxylipins mainly derived from arachidonate ((5Z,8Z,11Z,14Z)-eicosatetraenoate, AA, C20:4(n-6)), with a particular role in the inflammatory response. The cyclooxygenase activity oxygenates AA to the hydroperoxy endoperoxide prostaglandin G2 (PGG2), and the peroxidase activity reduces PGG2 to the hydroxy endoperoxide prostaglandin H2 (PGH2), the precursor of all 2-series prostaglandins and thromboxanes. This complex transformation is initiated by abstraction of hydrogen at carbon 13 (with S-stereochemistry), followed by insertion of molecular O2 to form the endoperoxide bridge between carbon 9 and 11 that defines prostaglandins. The insertion of a second molecule of O2 (bis-oxygenase activity) yields a hydroperoxy group in PGG2 that is then reduced to PGH2 by two electrons (PubMed:7947975). Involved in the constitutive production of prostanoids in particular in the stomach and platelets. In gastric epithelial cells, it is a key step in the generation of prostaglandins, such as prostaglandin E2 (PGE2), which plays an important role in cytoprotection. In platelets, it is involved in the generation of thromboxane A2 (TXA2), which promotes platelet activation and aggregation, vasoconstriction and proliferation of vascular smooth muscle cells (Probable). Can also use linoleate (LA, (9Z,12Z)-octadecadienoate, C18:2(n-6)) as substrate and produce hydroxyoctadecadienoates (HODEs) in a regio- and stereospecific manner, being (9R)-HODE ((9R)-hydroxy-(10E,12Z)-octadecadienoate) and (13S)-HODE ((13S)-hydroxy-(9Z,11E)-octadecadienoate) its major products (By similarity)
Specific Function
Heme binding
Gene Name
PTGS1
Uniprot ID
P23219
Uniprot Name
Prostaglandin G/H synthase 1
Molecular Weight
68685.82 Da
References
  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Dual cyclooxygenase and peroxidase in the biosynthesis pathway of prostanoids, a class of C20 oxylipins mainly derived from arachidonate ((5Z,8Z,11Z,14Z)-eicosatetraenoate, AA, C20:4(n-6)), with a particular role in the inflammatory response (PubMed:11939906, PubMed:16373578, PubMed:19540099, PubMed:22942274, PubMed:26859324, PubMed:27226593, PubMed:7592599, PubMed:7947975, PubMed:9261177). The cyclooxygenase activity oxygenates AA to the hydroperoxy endoperoxide prostaglandin G2 (PGG2), and the peroxidase activity reduces PGG2 to the hydroxy endoperoxide prostaglandin H2 (PGH2), the precursor of all 2-series prostaglandins and thromboxanes (PubMed:16373578, PubMed:22942274, PubMed:26859324, PubMed:27226593, PubMed:7592599, PubMed:7947975, PubMed:9261177). This complex transformation is initiated by abstraction of hydrogen at carbon 13 (with S-stereochemistry), followed by insertion of molecular O2 to form the endoperoxide bridge between carbon 9 and 11 that defines prostaglandins. The insertion of a second molecule of O2 (bis-oxygenase activity) yields a hydroperoxy group in PGG2 that is then reduced to PGH2 by two electrons (PubMed:16373578, PubMed:22942274, PubMed:26859324, PubMed:27226593, PubMed:7592599, PubMed:7947975, PubMed:9261177). Similarly catalyzes successive cyclooxygenation and peroxidation of dihomo-gamma-linoleate (DGLA, C20:3(n-6)) and eicosapentaenoate (EPA, C20:5(n-3)) to corresponding PGH1 and PGH3, the precursors of 1- and 3-series prostaglandins (PubMed:11939906, PubMed:19540099). In an alternative pathway of prostanoid biosynthesis, converts 2-arachidonoyl lysophopholipids to prostanoid lysophopholipids, which are then hydrolyzed by intracellular phospholipases to release free prostanoids (PubMed:27642067). Metabolizes 2-arachidonoyl glycerol yielding the glyceryl ester of PGH2, a process that can contribute to pain response (PubMed:22942274). Generates lipid mediators from n-3 and n-6 polyunsaturated fatty acids (PUFAs) via a lipoxygenase-type mechanism. Oxygenates PUFAs to hydroperoxy compounds and then reduces them to corresponding alcohols (PubMed:11034610, PubMed:11192938, PubMed:9048568, PubMed:9261177). Plays a role in the generation of resolution phase interaction products (resolvins) during both sterile and infectious inflammation (PubMed:12391014). Metabolizes docosahexaenoate (DHA, C22:6(n-3)) to 17R-HDHA, a precursor of the D-series resolvins (RvDs) (PubMed:12391014). As a component of the biosynthetic pathway of E-series resolvins (RvEs), converts eicosapentaenoate (EPA, C20:5(n-3)) primarily to 18S-HEPE that is further metabolized by ALOX5 and LTA4H to generate 18S-RvE1 and 18S-RvE2 (PubMed:21206090). In vascular endothelial cells, converts docosapentaenoate (DPA, C22:5(n-3)) to 13R-HDPA, a precursor for 13-series resolvins (RvTs) shown to activate macrophage phagocytosis during bacterial infection (PubMed:26236990). In activated leukocytes, contributes to oxygenation of hydroxyeicosatetraenoates (HETE) to diHETES (5,15-diHETE and 5,11-diHETE) (PubMed:22068350, PubMed:26282205). Can also use linoleate (LA, (9Z,12Z)-octadecadienoate, C18:2(n-6)) as substrate and produce hydroxyoctadecadienoates (HODEs) in a regio- and stereospecific manner, being (9R)-HODE ((9R)-hydroxy-(10E,12Z)-octadecadienoate) and (13S)-HODE ((13S)-hydroxy-(9Z,11E)-octadecadienoate) its major products (By similarity). During neuroinflammation, plays a role in neuronal secretion of specialized preresolving mediators (SPMs) 15R-lipoxin A4 that regulates phagocytic microglia (By similarity)
Specific Function
Enzyme binding
Gene Name
PTGS2
Uniprot ID
P35354
Uniprot Name
Prostaglandin G/H synthase 2
Molecular Weight
68995.625 Da
References
  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Non-heme iron-containing dioxygenase that catalyzes the stereo-specific peroxidation of free and esterified polyunsaturated fatty acids generating a spectrum of bioactive lipid mediators (PubMed:17052953, PubMed:1944593, PubMed:24282679, PubMed:25293588, PubMed:32404334, PubMed:8334154). It inserts peroxyl groups at C12 or C15 of arachidonate ((5Z,8Z,11Z,14Z)-eicosatetraenoate) producing both 12-hydroperoxyeicosatetraenoate/12-HPETE and 15-hydroperoxyeicosatetraenoate/15-HPETE (PubMed:17052953, PubMed:1944593, PubMed:24282679, PubMed:8334154). It may then act on 12-HPETE to produce hepoxilins, which may show pro-inflammatory properties (By similarity). Can also peroxidize linoleate ((9Z,12Z)-octadecadienoate) to 13-hydroperoxyoctadecadienoate/13-HPODE (PubMed:8334154). May participate in the sequential oxidations of DHA ((4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoate) to generate specialized pro-resolving mediators (SPMs)like resolvin D5 ((7S,17S)-diHPDHA) and (7S,14S)-diHPDHA, that actively down-regulate the immune response and have anti-aggregation properties with platelets (PubMed:32404334). Can convert epoxy fatty acids to hydroperoxy-epoxides derivatives followed by an intramolecular nucleophilic substitution leading to the formation of monocyclic endoperoxides (PubMed:25293588). Plays an important role during the maintenance of self-tolerance by peroxidizing membrane-bound phosphatidylethanolamine which can then signal the sorting process for clearance of apoptotic cells during inflammation and prevent an autoimmune response. In addition to its role in the immune and inflammatory responses, this enzyme may play a role in epithelial wound healing in the cornea through production of lipoxin A4 (LXA(4)) and docosahexaenoic acid-derived neuroprotectin D1 (NPD1; 10R,17S-HDHA), both lipid autacoids exhibit anti-inflammatory and neuroprotective properties. Furthermore, it may regulate actin polymerization which is crucial for several biological processes such as the phagocytosis of apoptotic cells. It is also implicated in the generation of endogenous ligands for peroxisome proliferator activated receptor (PPAR-gamma), hence modulating macrophage development and function. It may also exert a negative effect on skeletal development by regulating bone mass through this pathway. As well as participates in ER stress and downstream inflammation in adipocytes, pancreatic islets, and liver (By similarity). Finally, it is also involved in the cellular response to IL13/interleukin-13 (PubMed:21831839)
Specific Function
Arachidonate 12(s)-lipoxygenase activity
Gene Name
ALOX15
Uniprot ID
P16050
Uniprot Name
Polyunsaturated fatty acid lipoxygenase ALOX15
Molecular Weight
74803.795 Da
References
  1. MacCarrone M, Lorenzon T, Guerrieri P, Agro AF: Resveratrol prevents apoptosis in K562 cells by inhibiting lipoxygenase and cyclooxygenase activity. Eur J Biochem. 1999 Oct 1;265(1):27-34. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Catalyzes the oxygenation of arachidonate ((5Z,8Z,11Z,14Z)-eicosatetraenoate) to 5-hydroperoxyeicosatetraenoate (5-HPETE) followed by the dehydration to 5,6- epoxyeicosatetraenoate (Leukotriene A4/LTA4), the first two steps in the biosynthesis of leukotrienes, which are potent mediators of inflammation (PubMed:19022417, PubMed:21233389, PubMed:22516296, PubMed:23246375, PubMed:24282679, PubMed:24893149, PubMed:31664810, PubMed:8615788, PubMed:8631361). Also catalyzes the oxygenation of arachidonate into 8-hydroperoxyicosatetraenoate (8-HPETE) and 12-hydroperoxyicosatetraenoate (12-HPETE) (PubMed:23246375). Displays lipoxin synthase activity being able to convert (15S)-HETE into a conjugate tetraene (PubMed:31664810). Although arachidonate is the preferred substrate, this enzyme can also metabolize oxidized fatty acids derived from arachidonate such as (15S)-HETE, eicosapentaenoate (EPA) such as (18R)- and (18S)-HEPE or docosahexaenoate (DHA) which lead to the formation of specialized pro-resolving mediators (SPM) lipoxin and resolvins E and D respectively, therefore it participates in anti-inflammatory responses (PubMed:17114001, PubMed:21206090, PubMed:31664810, PubMed:32404334, PubMed:8615788). Oxidation of DHA directly inhibits endothelial cell proliferation and sprouting angiogenesis via peroxisome proliferator-activated receptor gamma (PPARgamma) (By similarity). It does not catalyze the oxygenation of linoleic acid and does not convert (5S)-HETE to lipoxin isomers (PubMed:31664810). In addition to inflammatory processes, it participates in dendritic cell migration, wound healing through an antioxidant mechanism based on heme oxygenase-1 (HO-1) regulation expression, monocyte adhesion to the endothelium via ITGAM expression on monocytes (By similarity). Moreover, it helps establish an adaptive humoral immunity by regulating primary resting B cells and follicular helper T cells and participates in the CD40-induced production of reactive oxygen species (ROS) after CD40 ligation in B cells through interaction with PIK3R1 that bridges ALOX5 with CD40 (PubMed:21200133). May also play a role in glucose homeostasis, regulation of insulin secretion and palmitic acid-induced insulin resistance via AMPK (By similarity). Can regulate bone mineralization and fat cell differentiation increases in induced pluripotent stem cells (By similarity)
Specific Function
Arachidonate 12(s)-lipoxygenase activity
Gene Name
ALOX5
Uniprot ID
P09917
Uniprot Name
Polyunsaturated fatty acid 5-lipoxygenase
Molecular Weight
77982.595 Da
References
  1. MacCarrone M, Lorenzon T, Guerrieri P, Agro AF: Resveratrol prevents apoptosis in K562 cells by inhibiting lipoxygenase and cyclooxygenase activity. Eur J Biochem. 1999 Oct 1;265(1):27-34. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Ligand-activated transcription factor that enables cells to adapt to changing conditions by sensing compounds from the environment, diet, microbiome and cellular metabolism, and which plays important roles in development, immunity and cancer (PubMed:23275542, PubMed:30373764, PubMed:32818467, PubMed:7961644). Upon ligand binding, translocates into the nucleus, where it heterodimerizes with ARNT and induces transcription by binding to xenobiotic response elements (XRE) (PubMed:23275542, PubMed:30373764, PubMed:7961644). Regulates a variety of biological processes, including angiogenesis, hematopoiesis, drug and lipid metabolism, cell motility and immune modulation (PubMed:12213388). Xenobiotics can act as ligands: upon xenobiotic-binding, activates the expression of multiple phase I and II xenobiotic chemical metabolizing enzyme genes (such as the CYP1A1 gene) (PubMed:7961644). Mediates biochemical and toxic effects of halogenated aromatic hydrocarbons (PubMed:34521881, PubMed:7961644). Next to xenobiotics, natural ligands derived from plants, microbiota, and endogenous metabolism are potent AHR agonists (PubMed:18076143). Tryptophan (Trp) derivatives constitute an important class of endogenous AHR ligands (PubMed:32818467, PubMed:32866000). Acts as a negative regulator of anti-tumor immunity: indoles and kynurenic acid generated by Trp catabolism act as ligand and activate AHR, thereby promoting AHR-driven cancer cell motility and suppressing adaptive immunity (PubMed:32818467). Regulates the circadian clock by inhibiting the basal and circadian expression of the core circadian component PER1 (PubMed:28602820). Inhibits PER1 by repressing the CLOCK-BMAL1 heterodimer mediated transcriptional activation of PER1 (PubMed:28602820). The heterodimer ARNT:AHR binds to core DNA sequence 5'-TGCGTG-3' within the dioxin response element (DRE) of target gene promoters and activates their transcription (PubMed:28602820)
Specific Function
Cis-regulatory region sequence-specific dna binding
Gene Name
AHR
Uniprot ID
P35869
Uniprot Name
Aryl hydrocarbon receptor
Molecular Weight
96146.705 Da
References
  1. de Medina P, Casper R, Savouret JF, Poirot M: Synthesis and biological properties of new stilbene derivatives of resveratrol as new selective aryl hydrocarbon modulators. J Med Chem. 2005 Jan 13;48(1):287-91. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Together with PI4K2A and the type III PI4Ks (PIK4CA and PIK4CB) it contributes to the overall PI4-kinase activity of the cell (PubMed:11923287, PubMed:12324459). This contribution may be especially significant in plasma membrane, endosomal and Golgi compartments (PubMed:11923287, PubMed:12324459). The phosphorylation of phosphatidylinositol (PI) to PI4P is the first committed step in the generation of phosphatidylinositol 4,5-bisphosphate (PIP2), a precursor of the second messenger inositol 1,4,5-trisphosphate (InsP3) (PubMed:11923287, PubMed:12324459). Contributes to the production of InsP3 in stimulated cells and is likely to be involved in the regulation of vesicular trafficking
Specific Function
1-phosphatidylinositol 4-kinase activity
Gene Name
PI4K2B
Uniprot ID
Q8TCG2
Uniprot Name
Phosphatidylinositol 4-kinase type 2-beta
Molecular Weight
54743.71 Da
References
  1. Srivastava R, Ratheesh A, Gude RK, Rao KV, Panda D, Subrahmanyam G: Resveratrol inhibits type II phosphatidylinositol 4-kinase: a key component in pathways of phosphoinositide turn over. Biochem Pharmacol. 2005 Oct 1;70(7):1048-55. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Integrin alpha-5/beta-1 (ITGA5:ITGB1) is a receptor for fibronectin and fibrinogen. It recognizes the sequence R-G-D in its ligands. ITGA5:ITGB1 binds to PLA2G2A via a site (site 2) which is distinct from the classical ligand-binding site (site 1) and this induces integrin conformational changes and enhanced ligand binding to site 1 (PubMed:18635536, PubMed:25398877). ITGA5:ITGB1 acts as a receptor for fibrillin-1 (FBN1) and mediates R-G-D-dependent cell adhesion to FBN1 (PubMed:12807887, PubMed:17158881). ITGA5:ITGB1 acts as a receptor for fibronectin (FN1) and mediates R-G-D-dependent cell adhesion to FN1 (PubMed:33962943). ITGA5:ITGB1 is a receptor for IL1B and binding is essential for IL1B signaling (PubMed:29030430). ITGA5:ITGB3 is a receptor for soluble CD40LG and is required for CD40/CD40LG signaling (PubMed:31331973)
Specific Function
Calcium ion binding
Gene Name
ITGA5
Uniprot ID
P08648
Uniprot Name
Integrin alpha-5
Molecular Weight
114535.52 Da
References
  1. Davis PJ, Mousa SA, Cody V, Tang HY, Lin HY: Small molecule hormone or hormone-like ligands of integrin alphaVbeta3: implications for cancer cell behavior. Horm Cancer. 2013 Dec;4(6):335-42. doi: 10.1007/s12672-013-0156-8. Epub 2013 Aug 14. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Integrin alpha-V/beta-3 (ITGAV:ITGB3) is a receptor for cytotactin, fibronectin, laminin, matrix metalloproteinase-2, osteopontin, osteomodulin, prothrombin, thrombospondin, vitronectin and von Willebrand factor. Integrin alpha-IIb/beta-3 (ITGA2B:ITGB3) is a receptor for fibronectin, fibrinogen, plasminogen, prothrombin, thrombospondin and vitronectin. Integrins alpha-IIb/beta-3 and alpha-V/beta-3 recognize the sequence R-G-D in a wide array of ligands. Integrin alpha-IIb/beta-3 recognizes the sequence H-H-L-G-G-G-A-K-Q-A-G-D-V in fibrinogen gamma chain. Following activation integrin alpha-IIb/beta-3 brings about platelet/platelet interaction through binding of soluble fibrinogen. This step leads to rapid platelet aggregation which physically plugs ruptured endothelial surface. Fibrinogen binding enhances SELP expression in activated platelets (By similarity). ITGAV:ITGB3 binds to fractalkine (CX3CL1) and acts as its coreceptor in CX3CR1-dependent fractalkine signaling (PubMed:23125415, PubMed:24789099). ITGAV:ITGB3 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling (PubMed:20682778). ITGAV:ITGB3 binds to FGF1 and this binding is essential for FGF1 signaling (PubMed:18441324). ITGAV:ITGB3 binds to FGF2 and this binding is essential for FGF2 signaling (PubMed:28302677). ITGAV:ITGB3 binds to IGF1 and this binding is essential for IGF1 signaling (PubMed:19578119). ITGAV:ITGB3 binds to IGF2 and this binding is essential for IGF2 signaling (PubMed:28873464). ITGAV:ITGB3 binds to IL1B and this binding is essential for IL1B signaling (PubMed:29030430). ITGAV:ITGB3 binds to PLA2G2A via a site (site 2) which is distinct from the classical ligand-binding site (site 1) and this induces integrin conformational changes and enhanced ligand binding to site 1 (PubMed:18635536, PubMed:25398877). ITGAV:ITGB3 acts as a receptor for fibrillin-1 (FBN1) and mediates R-G-D-dependent cell adhesion to FBN1 (PubMed:12807887). In brain, plays a role in synaptic transmission and plasticity. Involved in the regulation of the serotonin neurotransmission, is required to localize to specific compartments within the synapse the serotonin receptor SLC6A4 and for an appropriate reuptake of serotonin. Controls excitatory synaptic strength by regulating GRIA2-containing AMPAR endocytosis, which affects AMPAR abundance and composition (By similarity). ITGAV:ITGB3 act as a receptor for CD40LG (PubMed:31331973). ITGAV:ITGB3 acts as a receptor for IBSP and promotes cell adhesion and migration to IBSP (PubMed:10640428)
Specific Function
Cell adhesion molecule binding
Gene Name
ITGB3
Uniprot ID
P05106
Uniprot Name
Integrin beta-3
Molecular Weight
87056.975 Da
References
  1. Davis PJ, Mousa SA, Cody V, Tang HY, Lin HY: Small molecule hormone or hormone-like ligands of integrin alphaVbeta3: implications for cancer cell behavior. Horm Cancer. 2013 Dec;4(6):335-42. doi: 10.1007/s12672-013-0156-8. Epub 2013 Aug 14. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Interaction between APP molecules on neighboring cells promotes synaptogenesis (PubMed:25122912). Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(o) and JIP. Inhibits G(o) alpha ATPase activity (By similarity). Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1 (By similarity). By acting as a kinesin I membrane receptor, plays a role in axonal anterograde transport of cargo towards synapses in axons (PubMed:17062754, PubMed:23011729). Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons. Provides Cu(2+) ions for GPC1 which are required for release of nitric oxide (NO) and subsequent degradation of the heparan sulfate chains on GPC1
Specific Function
Dna binding
Gene Name
APP
Uniprot ID
P05067
Uniprot Name
Amyloid-beta precursor protein
Molecular Weight
86942.715 Da
References
  1. Ahn JS, Lee JH, Kim JH, Paik SR: Novel method for quantitative determination of amyloid fibrils of alpha-synuclein and amyloid beta/A4 protein by using resveratrol. Anal Biochem. 2007 Aug 15;367(2):259-65. Epub 2007 May 26. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Neuronal protein that plays several roles in synaptic activity such as regulation of synaptic vesicle trafficking and subsequent neurotransmitter release (PubMed:20798282, PubMed:26442590, PubMed:28288128, PubMed:30404828). Participates as a monomer in synaptic vesicle exocytosis by enhancing vesicle priming, fusion and dilation of exocytotic fusion pores (PubMed:28288128, PubMed:30404828). Mechanistically, acts by increasing local Ca(2+) release from microdomains which is essential for the enhancement of ATP-induced exocytosis (PubMed:30404828). Acts also as a molecular chaperone in its multimeric membrane-bound state, assisting in the folding of synaptic fusion components called SNAREs (Soluble NSF Attachment Protein REceptors) at presynaptic plasma membrane in conjunction with cysteine string protein-alpha/DNAJC5 (PubMed:20798282). This chaperone activity is important to sustain normal SNARE-complex assembly during aging (PubMed:20798282). Also plays a role in the regulation of the dopamine neurotransmission by associating with the dopamine transporter (DAT1) and thereby modulating its activity (PubMed:26442590)
Specific Function
Actin binding
Gene Name
SNCA
Uniprot ID
P37840
Uniprot Name
Alpha-synuclein
Molecular Weight
14460.155 Da
References
  1. Ahn JS, Lee JH, Kim JH, Paik SR: Novel method for quantitative determination of amyloid fibrils of alpha-synuclein and amyloid beta/A4 protein by using resveratrol. Anal Biochem. 2007 Aug 15;367(2):259-65. Epub 2007 May 26. [Article]
Details
14. Estrogen receptor
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3 (PubMed:17922032). Maintains neuronal survival in response to ischemic reperfusion injury when in the presence of circulating estradiol (17-beta-estradiol/E2) (By similarity)
Specific Function
14-3-3 protein binding
Gene Name
ESR1
Uniprot ID
P03372
Uniprot Name
Estrogen receptor
Molecular Weight
66215.45 Da
References
  1. Lappano R, Rosano C, Madeo A, Albanito L, Plastina P, Gabriele B, Forti L, Stivala LA, Iacopetta D, Dolce V, Ando S, Pezzi V, Maggiolini M: Structure-activity relationships of resveratrol and derivatives in breast cancer cells. Mol Nutr Food Res. 2009 Jul;53(7):845-58. doi: 10.1002/mnfr.200800331. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
High affinity receptor for melatonin. Likely to mediate the reproductive and circadian actions of melatonin. The activity of this receptor is mediated by pertussis toxin sensitive G proteins that inhibit adenylate cyclase activity
Specific Function
G protein-coupled receptor activity
Gene Name
MTNR1A
Uniprot ID
P48039
Uniprot Name
Melatonin receptor type 1A
Molecular Weight
39374.315 Da
References
  1. Ferry G, Hecht S, Berger S, Moulharat N, Coge F, Guillaumet G, Leclerc V, Yous S, Delagrange P, Boutin JA: Old and new inhibitors of quinone reductase 2. Chem Biol Interact. 2010 Jul 30;186(2):103-9. doi: 10.1016/j.cbi.2010.04.006. Epub 2010 May 4. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
High affinity receptor for melatonin. Likely to mediate the reproductive and circadian actions of melatonin. The activity of this receptor is mediated by pertussis toxin sensitive G proteins that inhibit adenylate cyclase activity
Specific Function
G protein-coupled receptor activity
Gene Name
MTNR1B
Uniprot ID
P49286
Uniprot Name
Melatonin receptor type 1B
Molecular Weight
40187.895 Da
References
  1. Ferry G, Hecht S, Berger S, Moulharat N, Coge F, Guillaumet G, Leclerc V, Yous S, Delagrange P, Boutin JA: Old and new inhibitors of quinone reductase 2. Chem Biol Interact. 2010 Jul 30;186(2):103-9. doi: 10.1016/j.cbi.2010.04.006. Epub 2010 May 4. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Not Available
Specific Function
Carbohydrate binding
Gene Name
CLEC14A
Uniprot ID
Q86T13
Uniprot Name
C-type lectin domain family 14 member A
Molecular Weight
51635.005 Da
References
  1. Wang Y, Romigh T, He X, Orloff MS, Silverman RH, Heston WD, Eng C: Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines. Hum Mol Genet. 2010 Nov 15;19(22):4319-29. doi: 10.1093/hmg/ddq354. Epub 2010 Aug 20. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Nuclear receptor that binds and is activated by variety of endogenous and xenobiotic compounds. Transcription factor that activates the transcription of multiple genes involved in the metabolism and secretion of potentially harmful xenobiotics, drugs and endogenous compounds. Activated by the antibiotic rifampicin and various plant metabolites, such as hyperforin, guggulipid, colupulone, and isoflavones. Response to specific ligands is species-specific. Activated by naturally occurring steroids, such as pregnenolone and progesterone. Binds to a response element in the promoters of the CYP3A4 and ABCB1/MDR1 genes
Specific Function
Dna-binding transcription activator activity, rna polymerase ii-specific
Gene Name
NR1I2
Uniprot ID
O75469
Uniprot Name
Nuclear receptor subfamily 1 group I member 2
Molecular Weight
49761.245 Da
References
  1. Dring AM, Anderson LE, Qamar S, Stoner MA: Rational quantitative structure-activity relationship (RQSAR) screen for PXR and CAR isoform-specific nuclear receptor ligands. Chem Biol Interact. 2010 Dec 5;188(3):512-25. doi: 10.1016/j.cbi.2010.09.018. Epub 2010 Oct 20. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Curator comments
Antagonist at the canonical form of the receptor. Agonist at isoform 3 of the receptor.
General Function
Binds and transactivates the retinoic acid response elements that control expression of the retinoic acid receptor beta 2 and alcohol dehydrogenase 3 genes. Transactivates both the phenobarbital responsive element module of the human CYP2B6 gene and the CYP3A4 xenobiotic response element
Specific Function
Dna-binding transcription activator activity, rna polymerase ii-specific
Gene Name
NR1I3
Uniprot ID
Q14994
Uniprot Name
Nuclear receptor subfamily 1 group I member 3
Molecular Weight
39942.145 Da
References
  1. Dring AM, Anderson LE, Qamar S, Stoner MA: Rational quantitative structure-activity relationship (RQSAR) screen for PXR and CAR isoform-specific nuclear receptor ligands. Chem Biol Interact. 2010 Dec 5;188(3):512-25. doi: 10.1016/j.cbi.2010.09.018. Epub 2010 Oct 20. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Facilitative glucose transporter, which is responsible for constitutive or basal glucose uptake (PubMed:10227690, PubMed:10954735, PubMed:18245775, PubMed:19449892, PubMed:25982116, PubMed:27078104, PubMed:32860739). Has a very broad substrate specificity; can transport a wide range of aldoses including both pentoses and hexoses (PubMed:18245775, PubMed:19449892). Most important energy carrier of the brain: present at the blood-brain barrier and assures the energy-independent, facilitative transport of glucose into the brain (PubMed:10227690). In association with BSG and NXNL1, promotes retinal cone survival by increasing glucose uptake into photoreceptors (By similarity). Required for mesendoderm differentiation (By similarity)
Specific Function
D-glucose transmembrane transporter activity
Gene Name
SLC2A1
Uniprot ID
P11166
Uniprot Name
Solute carrier family 2, facilitated glucose transporter member 1
Molecular Weight
54083.325 Da
References
  1. Salas M, Obando P, Ojeda L, Ojeda P, Perez A, Vargas-Uribe M, Rivas CI, Vera JC, Reyes AM: Resolution of the direct interaction with and inhibition of the human GLUT1 hexose transporter by resveratrol from its effect on glucose accumulation. Am J Physiol Cell Physiol. 2013 Jul 1;305(1):C90-9. doi: 10.1152/ajpcell.00387.2012. Epub 2013 Apr 24. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
Curator comments
Resveratrol inhibits CBR1 with a mix of competitive and non-competitive kinetics.
General Function
NADPH-dependent reductase with broad substrate specificity. Catalyzes the reduction of a wide variety of carbonyl compounds including quinones, prostaglandins, menadione, plus various xenobiotics. Catalyzes the reduction of the antitumor anthracyclines doxorubicin and daunorubicin to the cardiotoxic compounds doxorubicinol and daunorubicinol (PubMed:15799708, PubMed:17344335, PubMed:17912391, PubMed:18449627, PubMed:18826943, PubMed:1921984, PubMed:7005231). Can convert prostaglandin E to prostaglandin F2-alpha (By similarity). Can bind glutathione, which explains its higher affinity for glutathione-conjugated substrates. Catalyzes the reduction of S-nitrosoglutathione (PubMed:17344335, PubMed:18826943). In addition, participates in the glucocorticoid metabolism by catalyzing the NADPH-dependent cortisol/corticosterone into 20beta-dihydrocortisol (20b-DHF) or 20beta-corticosterone (20b-DHB), which are weak agonists of NR3C1 and NR3C2 in adipose tissue (PubMed:28878267)
Specific Function
15-hydroxyprostaglandin dehydrogenase (nadp+) activity
Gene Name
CBR1
Uniprot ID
P16152
Uniprot Name
Carbonyl reductase [NADPH] 1
Molecular Weight
30374.73 Da
References
  1. Ito Y, Mitani T, Harada N, Isayama A, Tanimori S, Takenaka S, Nakano Y, Inui H, Yamaji R: Identification of carbonyl reductase 1 as a resveratrol-binding protein by affinity chromatography using 4'-amino-3,5-dihydroxy-trans-stilbene. J Nutr Sci Vitaminol (Tokyo). 2013;59(4):358-64. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Ligand-activated transcription factor. Key regulator of lipid metabolism. Activated by the endogenous ligand 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety. Receptor for peroxisome proliferators such as hypolipidemic drugs and fatty acids. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as a transcription activator for the ACOX1 and P450 genes. Transactivation activity requires heterodimerization with RXRA and is antagonized by NR2C2. May be required for the propagation of clock information to metabolic pathways regulated by PER2
Specific Function
Dna binding
Gene Name
PPARA
Uniprot ID
Q07869
Uniprot Name
Peroxisome proliferator-activated receptor alpha
Molecular Weight
52224.595 Da
References
  1. Konno H, Kanai Y, Katagiri M, Watanabe T, Mori A, Ikuta T, Tani H, Fukushima S, Tatefuji T, Shirasawa T: Melinjo (Gnetum gnemon L.) Seed Extract Decreases Serum Uric Acid Levels in Nonobese Japanese Males: A Randomized Controlled Study. Evid Based Complement Alternat Med. 2013;2013:589169. doi: 10.1155/2013/589169. Epub 2013 Dec 17. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated pro-inflammatory responses. Plays a role in the regulation of cardiovascular circadian rhythms by regulating the transcription of BMAL1 in the blood vessels (By similarity)
Specific Function
Alpha-actinin binding
Gene Name
PPARG
Uniprot ID
P37231
Uniprot Name
Peroxisome proliferator-activated receptor gamma
Molecular Weight
57619.58 Da
References
  1. Konno H, Kanai Y, Katagiri M, Watanabe T, Mori A, Ikuta T, Tani H, Fukushima S, Tatefuji T, Shirasawa T: Melinjo (Gnetum gnemon L.) Seed Extract Decreases Serum Uric Acid Levels in Nonobese Japanese Males: A Randomized Controlled Study. Evid Based Complement Alternat Med. 2013;2013:589169. doi: 10.1155/2013/589169. Epub 2013 Dec 17. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
AKT1 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis (PubMed:11882383, PubMed:15526160, PubMed:15861136, PubMed:21432781, PubMed:21620960, PubMed:31204173). This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates (PubMed:11882383, PubMed:15526160, PubMed:21432781, PubMed:21620960, PubMed:31204173). Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported (PubMed:11882383, PubMed:15526160, PubMed:21432781, PubMed:21620960). AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface (By similarity). Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling (By similarity). Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport (PubMed:11994271). AKT regulates also the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity (By similarity). Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven (By similarity). AKT regulates also cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase) (PubMed:11154276). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis (PubMed:11154276). AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating the mTORC1 signaling pathway, and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1 (PubMed:12150915, PubMed:12172553). Also regulates the mTORC1 signaling pathway by catalyzing phosphorylation of CASTOR1 and DEPDC5 (PubMed:31548394, PubMed:33594058). AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization (PubMed:10358075). In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319' (PubMed:10358075). FOXO3 and FOXO4 are phosphorylated on equivalent sites (PubMed:10358075). AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein) (PubMed:9829964). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1 (PubMed:9829964). AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis (By similarity). Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis (By similarity). Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity (By similarity). The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth (By similarity). AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I) (PubMed:12176338, PubMed:12964941). AKT mediates the antiapoptotic effects of IGF-I (By similarity). Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly (PubMed:19934221). May be involved in the regulation of the placental development (By similarity). Phosphorylates STK4/MST1 at 'Thr-120' and 'Thr-387' leading to inhibition of its: kinase activity, nuclear translocation, autophosphorylation and ability to phosphorylate FOXO3 (PubMed:17726016). Phosphorylates STK3/MST2 at 'Thr-117' and 'Thr-384' leading to inhibition of its: cleavage, kinase activity, autophosphorylation at Thr-180, binding to RASSF1 and nuclear translocation (PubMed:20086174, PubMed:20231902). Phosphorylates SRPK2 and enhances its kinase activity towards SRSF2 and ACIN1 and promotes its nuclear translocation (PubMed:19592491). Phosphorylates RAF1 at 'Ser-259' and negatively regulates its activity (PubMed:10576742). Phosphorylation of BAD stimulates its pro-apoptotic activity (PubMed:10926925). Phosphorylates KAT6A at 'Thr-369' and this phosphorylation inhibits the interaction of KAT6A with PML and negatively regulates its acetylation activity towards p53/TP53 (PubMed:23431171). Phosphorylates palladin (PALLD), modulating cytoskeletal organization and cell motility (PubMed:20471940). Phosphorylates prohibitin (PHB), playing an important role in cell metabolism and proliferation (PubMed:18507042). Phosphorylates CDKN1A, for which phosphorylation at 'Thr-145' induces its release from CDK2 and cytoplasmic relocalization (PubMed:16982699). These recent findings indicate that the AKT1 isoform has a more specific role in cell motility and proliferation (PubMed:16139227). Phosphorylates CLK2 thereby controlling cell survival to ionizing radiation (PubMed:20682768). Phosphorylates PCK1 at 'Ser-90', reducing the binding affinity of PCK1 to oxaloacetate and changing PCK1 into an atypical protein kinase activity using GTP as donor (PubMed:32322062). Also acts as an activator of TMEM175 potassium channel activity in response to growth factors: forms the lysoK(GF) complex together with TMEM175 and acts by promoting TMEM175 channel activation, independently of its protein kinase activity (PubMed:32228865). Acts as a regulator of mitochondrial calcium uptake by mediating phosphorylation of MICU1 in the mitochondrial intermembrane space, impairing MICU1 maturation (PubMed:30504268). Acts as an inhibitor of tRNA methylation by mediating phosphorylation of the N-terminus of METTL1, thereby inhibiting METTL1 methyltransferase activity (PubMed:15861136). In response to LPAR1 receptor pathway activation, phosphorylates Rabin8/RAB3IP which alters its activity and phosphorylates WDR44 which induces WDR44 binding to Rab11, thereby switching Rab11 vesicular function from preciliary trafficking to endocytic recycling (PubMed:31204173)
Specific Function
14-3-3 protein binding
Gene Name
AKT1
Uniprot ID
P31749
Uniprot Name
RAC-alpha serine/threonine-protein kinase
Molecular Weight
55686.035 Da
References
  1. Hsieh TC, Lin CY, Bennett DJ, Wu E, Wu JM: Biochemical and cellular evidence demonstrating AKT-1 as a binding partner for resveratrol targeting protein NQO2. PLoS One. 2014 Jun 26;9(6):e101070. doi: 10.1371/journal.pone.0101070. eCollection 2014. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Binds to the dendritic targeting element and may play a role in mRNA trafficking (By similarity). Part of a ternary complex that binds to the downstream control sequence (DCS) of the pre-mRNA. Mediates exon inclusion in transcripts that are subject to tissue-specific alternative splicing. May interact with single-stranded DNA from the far-upstream element (FUSE). May activate gene expression. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly by recruiting degradation machinery to ARE-containing mRNAs
Specific Function
Dna binding
Gene Name
KHSRP
Uniprot ID
Q92945
Uniprot Name
Far upstream element-binding protein 2
Molecular Weight
73115.16 Da
References
  1. Bollmann F, Art J, Henke J, Schrick K, Besche V, Bros M, Li H, Siuda D, Handler N, Bauer F, Erker T, Behnke F, Monch B, Hardle L, Hoffmann M, Chen CY, Forstermann U, Dirsch VM, Werz O, Kleinert H, Pautz A: Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity. Nucleic Acids Res. 2014 Nov 10;42(20):12555-69. doi: 10.1093/nar/gku1033. Epub 2014 Oct 28. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Tyrosine--tRNA ligase that catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr) (Probable) (PubMed:25533949). Also acts as a positive regulator of poly-ADP-ribosylation in the nucleus, independently of its tyrosine--tRNA ligase activity (PubMed:25533949). Activity is switched upon resveratrol-binding: resveratrol strongly inhibits the tyrosine--tRNA ligase activity and promotes relocalization to the nucleus, where YARS1 specifically stimulates the poly-ADP-ribosyltransferase activity of PARP1 (PubMed:25533949)
Specific Function
Atp binding
Gene Name
YARS1
Uniprot ID
P54577
Uniprot Name
Tyrosine--tRNA ligase, cytoplasmic
Molecular Weight
59143.025 Da
References
  1. Sajish M, Schimmel P: A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol. Nature. 2015 Mar 19;519(7543):370-3. doi: 10.1038/nature14028. Epub 2014 Dec 22. [Article]

Enzymes

Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Substrate
Inhibitor
Inducer
Curator comments
Data supporting this enzyme action is limited to in vitro studies. Resveratrol has been implicated as both an inhibitor and inducer of CYP1A2.
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:19965576, PubMed:9435160). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:19965576, PubMed:9435160). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:11555828, PubMed:12865317). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2 (PubMed:11555828, PubMed:12865317). Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). May act as a major enzyme for all-trans retinoic acid biosynthesis in the liver. Catalyzes two successive oxidative transformation of all-trans retinol to all-trans retinal and then to the active form all-trans retinoic acid (PubMed:10681376). Primarily catalyzes stereoselective epoxidation of the last double bond of polyunsaturated fatty acids (PUFA), displaying a strong preference for the (R,S) stereoisomer (PubMed:19965576). Catalyzes bisallylic hydroxylation and omega-1 hydroxylation of PUFA (PubMed:9435160). May also participate in eicosanoids metabolism by converting hydroperoxide species into oxo metabolites (lipoxygenase-like reaction, NADPH-independent) (PubMed:21068195). Plays a role in the oxidative metabolism of xenobiotics. Catalyzes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin (PubMed:14725854). Metabolizes caffeine via N3-demethylation (Probable)
Specific Function
Aromatase activity
Gene Name
CYP1A2
Uniprot ID
P05177
Uniprot Name
Cytochrome P450 1A2
Molecular Weight
58406.915 Da
References
  1. Piver B, Fer M, Vitrac X, Merillon JM, Dreano Y, Berthou F, Lucas D: Involvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomes. Biochem Pharmacol. 2004 Aug 15;68(4):773-82. [Article]
  2. Chang TK, Chen J, Lee WB: Differential inhibition and inactivation of human CYP1 enzymes by trans-resveratrol: evidence for mechanism-based inactivation of CYP1A2. J Pharmacol Exp Ther. 2001 Dec;299(3):874-82. [Article]
  3. Chow HH, Garland LL, Hsu CH, Vining DR, Chew WM, Miller JA, Perloff M, Crowell JA, Alberts DS: Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prev Res (Phila). 2010 Sep;3(9):1168-75. doi: 10.1158/1940-6207.CAPR-09-0155. Epub 2010 Aug 17. [Article]
  4. Hyrsova L, Vanduchova A, Dusek J, Smutny T, Carazo A, Maresova V, Trejtnar F, Barta P, Anzenbacher P, Dvorak Z, Pavek P: Trans-resveratrol, but not other natural stilbenes occurring in food, carries the risk of drug-food interaction via inhibition of cytochrome P450 enzymes or interaction with xenosensor receptors. Toxicol Lett. 2019 Jan;300:81-91. doi: 10.1016/j.toxlet.2018.10.028. Epub 2018 Oct 27. [Article]
  5. Review of Toxicological Literature, NIH [File]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Substrate
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15041462, PubMed:15805301, PubMed:18577768, PubMed:19965576, PubMed:20972997). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15041462, PubMed:15805301, PubMed:18577768, PubMed:19965576, PubMed:20972997). Catalyzes the hydroxylation of carbon-hydrogen bonds. Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C15-alpha and C16-alpha positions (PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15805301). Displays different regioselectivities for polyunsaturated fatty acids (PUFA) hydroxylation (PubMed:15041462, PubMed:18577768). Catalyzes the epoxidation of double bonds of certain PUFA (PubMed:15041462, PubMed:19965576, PubMed:20972997). Converts arachidonic acid toward epoxyeicosatrienoic acid (EET) regioisomers, 8,9-, 11,12-, and 14,15-EET, that function as lipid mediators in the vascular system (PubMed:20972997). Displays an absolute stereoselectivity in the epoxidation of eicosapentaenoic acid (EPA) producing the 17(R),18(S) enantiomer (PubMed:15041462). May play an important role in all-trans retinoic acid biosynthesis in extrahepatic tissues. Catalyzes two successive oxidative transformation of all-trans retinol to all-trans retinal and then to the active form all-trans retinoic acid (PubMed:10681376). May also participate in eicosanoids metabolism by converting hydroperoxide species into oxo metabolites (lipoxygenase-like reaction, NADPH-independent) (PubMed:21068195)
Specific Function
Arachidonic acid monooxygenase activity
Gene Name
CYP1A1
Uniprot ID
P04798
Uniprot Name
Cytochrome P450 1A1
Molecular Weight
58164.815 Da
References
  1. Chang TK, Chen J, Lee WB: Differential inhibition and inactivation of human CYP1 enzymes by trans-resveratrol: evidence for mechanism-based inactivation of CYP1A2. J Pharmacol Exp Ther. 2001 Dec;299(3):874-82. [Article]
  2. Piver B, Fer M, Vitrac X, Merillon JM, Dreano Y, Berthou F, Lucas D: Involvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomes. Biochem Pharmacol. 2004 Aug 15;68(4):773-82. [Article]
  3. Chun YJ, Kim MY, Guengerich FP: Resveratrol is a selective human cytochrome P450 1A1 inhibitor. Biochem Biophys Res Commun. 1999 Aug 19;262(1):20-4. doi: 10.1006/bbrc.1999.1152. [Article]
Details
3. Cytochrome P450 1B1
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Substrate
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:15258110, PubMed:20972997). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:15258110, PubMed:20972997). Exhibits catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2- and 4-hydroxy E1 and E2. Displays a predominant hydroxylase activity toward E2 at the C-4 position (PubMed:11555828, PubMed:12865317). Metabolizes testosterone and progesterone to B or D ring hydroxylated metabolites (PubMed:10426814). May act as a major enzyme for all-trans retinoic acid biosynthesis in extrahepatic tissues. Catalyzes two successive oxidative transformation of all-trans retinol to all-trans retinal and then to the active form all-trans retinoic acid (PubMed:10681376, PubMed:15258110). Catalyzes the epoxidation of double bonds of certain PUFA. Converts arachidonic acid toward epoxyeicosatrienoic acid (EpETrE) regioisomers, 8,9-, 11,12-, and 14,15- EpETrE, that function as lipid mediators in the vascular system (PubMed:20972997). Additionally, displays dehydratase activity toward oxygenated eicosanoids hydroperoxyeicosatetraenoates (HpETEs). This activity is independent of cytochrome P450 reductase, NADPH, and O2 (PubMed:21068195). Also involved in the oxidative metabolism of xenobiotics, particularly converting polycyclic aromatic hydrocarbons and heterocyclic aryl amines procarcinogens to DNA-damaging products (PubMed:10426814). Plays an important role in retinal vascular development. Under hyperoxic O2 conditions, promotes retinal angiogenesis and capillary morphogenesis, likely by metabolizing the oxygenated products generated during the oxidative stress. Also, contributes to oxidative homeostasis and ultrastructural organization and function of trabecular meshwork tissue through modulation of POSTN expression (By similarity)
Specific Function
Aromatase activity
Gene Name
CYP1B1
Uniprot ID
Q16678
Uniprot Name
Cytochrome P450 1B1
Molecular Weight
60845.33 Da
References
  1. Chang TK, Chen J, Lee WB: Differential inhibition and inactivation of human CYP1 enzymes by trans-resveratrol: evidence for mechanism-based inactivation of CYP1A2. J Pharmacol Exp Ther. 2001 Dec;299(3):874-82. [Article]
  2. Piver B, Fer M, Vitrac X, Merillon JM, Dreano Y, Berthou F, Lucas D: Involvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomes. Biochem Pharmacol. 2004 Aug 15;68(4):773-82. [Article]
Details
4. Cytochrome P450 3A4
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981)
Specific Function
1,8-cineole 2-exo-monooxygenase activity
Gene Name
CYP3A4
Uniprot ID
P08684
Uniprot Name
Cytochrome P450 3A4
Molecular Weight
57342.67 Da
References
  1. Chow HH, Garland LL, Hsu CH, Vining DR, Chew WM, Miller JA, Perloff M, Crowell JA, Alberts DS: Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prev Res (Phila). 2010 Sep;3(9):1168-75. doi: 10.1158/1940-6207.CAPR-09-0155. Epub 2010 Aug 17. [Article]
  2. Piver B, Berthou F, Dreano Y, Lucas D: Inhibition of CYP3A, CYP1A and CYP2E1 activities by resveratrol and other non volatile red wine components. Toxicol Lett. 2001 Dec 15;125(1-3):83-91. [Article]
  3. Hyrsova L, Vanduchova A, Dusek J, Smutny T, Carazo A, Maresova V, Trejtnar F, Barta P, Anzenbacher P, Dvorak Z, Pavek P: Trans-resveratrol, but not other natural stilbenes occurring in food, carries the risk of drug-food interaction via inhibition of cytochrome P450 enzymes or interaction with xenosensor receptors. Toxicol Lett. 2019 Jan;300:81-91. doi: 10.1016/j.toxlet.2018.10.028. Epub 2018 Oct 27. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of fatty acids, steroids and retinoids (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:19965576, PubMed:20972997). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 20-hydroxyeicosatetraenoic acid ethanolamide (20-HETE-EA) and 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:18698000, PubMed:21289075). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Catalyzes the oxidative transformations of all-trans retinol to all-trans retinal, a precursor for the active form all-trans-retinoic acid (PubMed:10681376). Also involved in the oxidative metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants
Specific Function
Anandamide 11,12 epoxidase activity
Gene Name
CYP2D6
Uniprot ID
P10635
Uniprot Name
Cytochrome P450 2D6
Molecular Weight
55768.94 Da
References
  1. Zhan YY, Liang BQ, Li XY, Gu EM, Dai DP, Cai JP, Hu GX: The effect of resveratrol on pharmacokinetics of aripiprazole in vivo and in vitro. Xenobiotica. 2016;46(5):439-44. doi: 10.3109/00498254.2015.1088175. Epub 2015 Sep 22. [Article]
  2. Chow HH, Garland LL, Hsu CH, Vining DR, Chew WM, Miller JA, Perloff M, Crowell JA, Alberts DS: Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prev Res (Phila). 2010 Sep;3(9):1168-75. doi: 10.1158/1940-6207.CAPR-09-0155. Epub 2010 Aug 17. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of endocannabinoids and steroids (PubMed:12865317, PubMed:21289075). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the epoxidation of double bonds of arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:21289075). Hydroxylates steroid hormones, including testosterone at C-16 and estrogens at C-2 (PubMed:12865317, PubMed:21289075). Plays a role in the oxidative metabolism of xenobiotics, including plant lipids and drugs (PubMed:11695850, PubMed:22909231). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850)
Specific Function
Anandamide 11,12 epoxidase activity
Gene Name
CYP2B6
Uniprot ID
P20813
Uniprot Name
Cytochrome P450 2B6
Molecular Weight
56277.81 Da
References
  1. Zhan YY, Liang BQ, Li XY, Gu EM, Dai DP, Cai JP, Hu GX: The effect of resveratrol on pharmacokinetics of aripiprazole in vivo and in vitro. Xenobiotica. 2016;46(5):439-44. doi: 10.3109/00498254.2015.1088175. Epub 2015 Sep 22. [Article]
  2. Guthrie AR, Chow HS, Martinez JA: Effects of resveratrol on drug- and carcinogen-metabolizing enzymes, implications for cancer prevention. Pharmacol Res Perspect. 2017 Jan 31;5(1):e00294. doi: 10.1002/prp2.294. eCollection 2017 Feb. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of polyunsaturated fatty acids (PUFA) (PubMed:18577768, PubMed:19965576, PubMed:20972997). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18577768, PubMed:19965576, PubMed:20972997). Catalyzes the hydroxylation of carbon-hydrogen bonds. Hydroxylates PUFA specifically at the omega-1 position (PubMed:18577768). Catalyzes the epoxidation of double bonds of PUFA (PubMed:19965576, PubMed:20972997). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine. Hydroxylates fenbendazole at the 4' position (PubMed:23959307)
Specific Function
(r)-limonene 6-monooxygenase activity
Gene Name
CYP2C19
Uniprot ID
P33261
Uniprot Name
Cytochrome P450 2C19
Molecular Weight
55944.565 Da
References
  1. Ji SB, Park SY, Bae S, Seo HJ, Kim SE, Lee GM, Wu Z, Liu KH: Comprehensive Investigation of Stereoselective Food Drug Interaction Potential of Resveratrol on Nine P450 and Six UGT Isoforms in Human Liver Microsomes. Pharmaceutics. 2021 Sep 7;13(9):1419. doi: 10.3390/pharmaceutics13091419. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids and steroids (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:15766564, PubMed:19965576, PubMed:7574697, PubMed:9866708). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Exhibits low catalytic activity for the formation of catechol estrogens from 17beta-estradiol (E2) and estrone (E1), namely 2-hydroxy E1 and E2 (PubMed:12865317). Catalyzes bisallylic hydroxylation and hydroxylation with double-bond migration of polyunsaturated fatty acids (PUFA) (PubMed:9435160, PubMed:9866708). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan (PubMed:25994031)
Specific Function
(r)-limonene 6-monooxygenase activity
Gene Name
CYP2C9
Uniprot ID
P11712
Uniprot Name
Cytochrome P450 2C9
Molecular Weight
55627.365 Da
References
  1. Zhan YY, Liang BQ, Li XY, Gu EM, Dai DP, Cai JP, Hu GX: The effect of resveratrol on pharmacokinetics of aripiprazole in vivo and in vitro. Xenobiotica. 2016;46(5):439-44. doi: 10.3109/00498254.2015.1088175. Epub 2015 Sep 22. [Article]
  2. Chow HH, Garland LL, Hsu CH, Vining DR, Chew WM, Miller JA, Perloff M, Crowell JA, Alberts DS: Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prev Res (Phila). 2010 Sep;3(9):1168-75. doi: 10.1158/1940-6207.CAPR-09-0155. Epub 2010 Aug 17. [Article]
  3. Akiyoshi T, Uchiyama M, Inada R, Imaoka A, Ohtani H: Analysis of inhibition kinetics of three beverage ingredients, bergamottin, dihydroxybergamottin and resveratrol, on CYP2C9 activity. Drug Metab Pharmacokinet. 2022 Feb;42:100429. doi: 10.1016/j.dmpk.2021.100429. Epub 2021 Nov 3. [Article]

Carriers

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Thyroid hormone-binding protein. Probably transports thyroxine from the bloodstream to the brain
Specific Function
Hormone activity
Gene Name
TTR
Uniprot ID
P02766
Uniprot Name
Transthyretin
Molecular Weight
15886.88 Da
References
  1. Commodari F, Khiat A, Ibrahimi S, Brizius AR, Kalkstein N: Comparison of the phytoestrogen trans-resveratrol (3,4',5-trihydroxystilbene) structures from x-ray diffraction and solution NMR. Magn Reson Chem. 2005 Jul;43(7):567-72. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Binds water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs (Probable). Its main function is the regulation of the colloidal osmotic pressure of blood (Probable). Major zinc transporter in plasma, typically binds about 80% of all plasma zinc (PubMed:19021548). Major calcium and magnesium transporter in plasma, binds approximately 45% of circulating calcium and magnesium in plasma (By similarity). Potentially has more than two calcium-binding sites and might additionally bind calcium in a non-specific manner (By similarity). The shared binding site between zinc and calcium at residue Asp-273 suggests a crosstalk between zinc and calcium transport in the blood (By similarity). The rank order of affinity is zinc > calcium > magnesium (By similarity). Binds to the bacterial siderophore enterobactin and inhibits enterobactin-mediated iron uptake of E.coli from ferric transferrin, and may thereby limit the utilization of iron and growth of enteric bacteria such as E.coli (PubMed:6234017). Does not prevent iron uptake by the bacterial siderophore aerobactin (PubMed:6234017)
Specific Function
Antioxidant activity
Gene Name
ALB
Uniprot ID
P02768
Uniprot Name
Albumin
Molecular Weight
69365.94 Da
References
  1. Lu Z, Zhang Y, Liu H, Yuan J, Zheng Z, Zou G: Transport of a cancer chemopreventive polyphenol, resveratrol: interaction with serum albumin and hemoglobin. J Fluoresc. 2007 Sep;17(5):580-7. Epub 2007 Jun 28. [Article]

Drug created at June 13, 2005 13:24 / Updated at August 26, 2024 19:21