Midostaurin

Identification

Summary

Midostaurin is an antineoplastic agent used to treat high-risk acute myeloid leukemia (AML) with specific mutations, aggressive systemic mastocytosis (ASM), systemic mastocytosis with associated hematologic neoplasm (SM-AHN), or mast cell leukemia (MCL).

Brand Names
Rydapt
Generic Name
Midostaurin
DrugBank Accession Number
DB06595
Background

Midostaurin (as Rydapt) is a multitarget kinase inhibitor for the treatment for adult patients with newly diagnosed acute myeloid leukemia (AML) who have a specific genetic mutation called FLT3. It was initially characterized as a potential broad-spectrum antineoplastic agent, with activity toward diverse solid and hematopoietic tumors 4. It was approved on April 28, 2017 and has shown to increase the overall survival rate in patients with AML as an adjunct therapy along with chemotherapeutic agents.

Type
Small Molecule
Groups
Approved, Investigational
Structure
Weight
Average: 570.649
Monoisotopic: 570.226705462
Chemical Formula
C35H30N4O4
Synonyms
  • 4'-N-benzoylstaurosporine
  • Midostaurin
External IDs
  • CGP 41251
  • CGP-41251
  • NVP-PKC412
  • PKC 412
  • PKC-412

Pharmacology

Indication

Investigated for use/treatment in adult patients with high-risk acute myeloid leukemia (AML) who are FLT3 mutation-positive, agressive systemic mastocytosis (ASM), systemic mastocytosis with associated hematological neoplasm (SM-AHN), or mast cell leukemia (MCL).

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Associated Conditions
Indication TypeIndicationCombined Product DetailsApproval LevelAge GroupPatient CharacteristicsDose Form
Used in combination to treatAcute myeloid leukemiaRegimen in combination with: Daunorubicin (DB00694), Cytarabine (DB00987)••••••••••••
Treatment ofAggressive systemic mastocytosis••••••••••••
Treatment ofMast cell leukemia••••••••••••
Treatment ofSystemic mastocytosis••••••••••••
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

It targets multiple WT and mutated kinases that, when activated, constitutively stimulate aberrant signalling cascades that lead to malignancies such as AML and ASM. Alternative pharmacodynamic effect of midostaurin in prolonging QTc intervals was not clinically significant in patients with advanced SM or AML when compared to placebo. Midostaurin is therapeutically beneficial as a combination therapy for patients undergoing chemotherapy.

Mechanism of action

It potently inhibits multiple receptor tyrosine kinases. Midostaurin and its major active metabolites CGP62221 and CGP52421 inhibit the activity of protein kinase C alpha (PKCalpha), VEGFR2, KIT, PDGFR and WT and/or mutant FLT3 tyrosine kinases. Inhibition of FLT3 receptor signalling cascades induces apoptosis of target leukemia cells expressing target receptors and mast cells, in addition to its antiproliferative activity toward multiple cancer cell lines 4. Midostaurin also interacts with organic anion transporter (OATP) 1A1 and multidrug resistance protein (MRP)-2 according to preliminary in vitro studies.

TargetActionsOrganism
AProtein kinase C gamma type
inhibitor
Humans
AProtein kinase C alpha type
antagonist
inhibitor
Humans
AVascular endothelial growth factor receptor 2
antagonist
inhibitor
Humans
APlatelet-derived growth factor receptor alpha
antagonist
inhibitor
Humans
APlatelet-derived growth factor receptor beta
antagonist
inhibitor
Humans
AReceptor-type tyrosine-protein kinase FLT3
antagonist
inhibitor
Humans
UMast/stem cell growth factor receptor Kit
antagonist
inhibitor
Humans
Absorption

The time to reach maximum concentration ranges from 1-3 hrs in fasting patients. The maximum concentration and the time it takes to reach this concentration is reduced up to 20% in presence of a standard meal.

Volume of distribution

The Vd of midostaurin is 95.2L. The parent drug and its main metabolites (CGP62221, CGP52421) are distributed in plasma in vitro.

Protein binding

Midostaurin predominantly binds to α1-acid glycoprotein in vitro. The parent drug and its metabolites are >99.8% bound to plasma proteins in vitro.

Metabolism

Midostaurin is primarily metabolized into CGP62221 and CGP52421 via hepatic CYP3A4 enzymatic activity. The metabolism of CGP62221 takes place initially in a linear relationship whereas CGP52421 formation is an inducible process 5.

Hover over products below to view reaction partners

Route of elimination

Accounting for 95% of recovered dose eliminated through fecal excretion, 91% was determined as metabolites and 4% as unchanged parent drug. Remaining 5% of the recovered dose is eliminated via renal excretion.

Half-life

Elimination half life is approximately 21 hrs for midostaurin, 32 hrs for CGP62221 and 482 hrs for CGP52421.

Clearance

The clearance values of during the initial formation of metabolites are 1.47 L/h for CGP62221 metabolite and 0.501 L/h for CGP52421. 28 days following the oral administration of midostaurin, the clearance of CGP52421 may increase up to 5.2 fold in a recommended dose of 25 mg, resulting in a 2.1- to 2.5-fold increase in total clearance of midostaurin 5.

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

In a fertility study involving female and male rats, there is evidence of reproductive toxicity including reduced sperm count and decline pregnancy rates when administering 0.01 to 0.1 times the recommended dose in humans. Incidences of pulmonary toxicities including interstitial lung disease and pneumonitis have occured in few patients undergoing midostaurin monotherapy or combination therapy.

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
1,2-BenzodiazepineThe metabolism of 1,2-Benzodiazepine can be decreased when combined with Midostaurin.
AbametapirThe serum concentration of Midostaurin can be increased when it is combined with Abametapir.
AbataceptThe metabolism of Midostaurin can be increased when combined with Abatacept.
AbemaciclibThe metabolism of Abemaciclib can be decreased when combined with Midostaurin.
AbirateroneThe metabolism of Abiraterone can be increased when combined with Midostaurin.
Food Interactions
  • Avoid St. John's Wort. This herb induces the CYP3A4 metabolism of midostaurin and may reduce its serum concentration.
  • Exercise caution with grapefruit products. Grapefruit inhibits the CYP3A4 metabolism of midostaurin, which may increase its serum concentration.
  • Take with food. Taking midostaurin with food increases the AUC, but it also prolongs the Tmax and reduces Cmax.

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
Brand Name Prescription Products
NameDosageStrengthRouteLabellerMarketing StartMarketing EndRegionImage
RydaptCapsule25 mgOralNovartis Europharm Limited2020-12-16Not applicableEU flag
RydaptCapsule25 mgOralNovartis2017-09-08Not applicableCanada flag
RydaptCapsule25 mgOralNovartis Europharm Limited2020-12-16Not applicableEU flag
RydaptCapsule, liquid filled25 mg/1OralNovartis Farma S.P.A.2017-04-28Not applicableUS flag

Categories

ATC Codes
L01EX10 — Midostaurin
Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as indolocarbazoles. These are polycyclic aromatic compounds containing an indole fused to a carbazole.
Kingdom
Organic compounds
Super Class
Organoheterocyclic compounds
Class
Indoles and derivatives
Sub Class
Carbazoles
Direct Parent
Indolocarbazoles
Alternative Parents
Pyrrolo[2,3-a]carbazoles / Pyrroloindoles / Isoindolones / Benzamides / Indoles / Benzoyl derivatives / Oxanes / Tertiary carboxylic acid amides / Heteroaromatic compounds / Pyrroles
show 9 more
Substituents
Aromatic heteropolycyclic compound / Azacycle / Benzamide / Benzenoid / Benzoic acid or derivatives / Benzoyl / Carboxamide group / Carboxylic acid derivative / Dialkyl ether / Ether
show 22 more
Molecular Framework
Aromatic heteropolycyclic compounds
External Descriptors
benzamides, gamma-lactam, organic heterooctacyclic compound, indolocarbazole (CHEBI:63452)
Affected organisms
  • Humans and other mammals

Chemical Identifiers

UNII
ID912S5VON
CAS number
120685-11-2
InChI Key
BMGQWWVMWDBQGC-IIFHNQTCSA-N
InChI
InChI=1S/C35H30N4O4/c1-35-32(42-3)25(37(2)34(41)19-11-5-4-6-12-19)17-26(43-35)38-23-15-9-7-13-20(23)28-29-22(18-36-33(29)40)27-21-14-8-10-16-24(21)39(35)31(27)30(28)38/h4-16,25-26,32H,17-18H2,1-3H3,(H,36,40)/t25-,26-,32-,35+/m1/s1
IUPAC Name
N-[(2S,3R,4R,6R)-3-methoxy-2-methyl-16-oxo-29-oxa-1,7,17-triazaoctacyclo[12.12.2.1^{2,6}.0^{7,28}.0^{8,13}.0^{15,19}.0^{20,27}.0^{21,26}]nonacosa-8(13),9,11,14(28),15(19),20(27),21(26),22,24-nonaen-4-yl]-N-methylbenzamide
SMILES
CO[C@@H]1[C@@H](C[C@H]2O[C@]1(C)N1C3=C(C=CC=C3)C3=C1C1=C(C4=C(C=CC=C4)N21)C1=C3CNC1=O)N(C)C(=O)C1=CC=CC=C1

References

General References
  1. Fischer T, Stone RM, Deangelo DJ, Galinsky I, Estey E, Lanza C, Fox E, Ehninger G, Feldman EJ, Schiller GJ, Klimek VM, Nimer SD, Gilliland DG, Dutreix C, Huntsman-Labed A, Virkus J, Giles FJ: Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010 Oct 1;28(28):4339-45. doi: 10.1200/JCO.2010.28.9678. Epub 2010 Aug 23. [Article]
  2. Millward MJ, House C, Bowtell D, Webster L, Olver IN, Gore M, Copeman M, Lynch K, Yap A, Wang Y, Cohen PS, Zalcberg J: The multikinase inhibitor midostaurin (PKC412A) lacks activity in metastatic melanoma: a phase IIA clinical and biologic study. Br J Cancer. 2006 Oct 9;95(7):829-34. Epub 2006 Sep 12. [Article]
  3. Gotlib J, Kluin-Nelemans HC, George TI, Akin C, Sotlar K, Hermine O, Awan FT, Hexner E, Mauro MJ, Sternberg DW, Villeneuve M, Huntsman Labed A, Stanek EJ, Hartmann K, Horny HP, Valent P, Reiter A: Efficacy and Safety of Midostaurin in Advanced Systemic Mastocytosis. N Engl J Med. 2016 Jun 30;374(26):2530-41. doi: 10.1056/NEJMoa1513098. [Article]
  4. Gallogly MM, Lazarus HM: Midostaurin: an emerging treatment for acute myeloid leukemia patients. J Blood Med. 2016 Apr 19;7:73-83. doi: 10.2147/JBM.S100283. eCollection 2016. [Article]
  5. Yin OQ, Wang Y, Schran H: A mechanism-based population pharmacokinetic model for characterizing time-dependent pharmacokinetics of midostaurin and its metabolites in human subjects. Clin Pharmacokinet. 2008;47(12):807-16. doi: 10.2165/0003088-200847120-00005. [Article]
  6. Abmole Midostaurin MSDS [Link]
  7. Alfa Aesar Midostaurin MSDS [Link]
  8. Cayman Midostaurin MSDS [Link]
  9. FDA Approved Drug Products: RYDAPT (midostaurin) capsules [Link]
KEGG Drug
D05029
PubChem Compound
9829523
PubChem Substance
347827778
ChemSpider
8005258
BindingDB
50326053
RxNav
1919083
ChEBI
63452
ChEMBL
CHEMBL608533
ZINC
ZINC000100013130
PDBe Ligand
2K2
Drugs.com
Drugs.com Drug Page
Wikipedia
Midostaurin
PDB Entries
4nct
FDA label
Download (306 KB)

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns
Not AvailableCompletedNot AvailableAcute Myeloid Leukemia1somestatusstop reasonjust information to hide
Not AvailableNo Longer AvailableNot AvailableAcute Myeloid Leukemia (AML) With / FLT3 Mutation, Internal Tandem Duplication (ITD) or Tyrosine Kinase Domain (TKD)1somestatusstop reasonjust information to hide
Not AvailableNo Longer AvailableNot AvailableAcute Myeloid Leukemia With FMS-like Tyrosine Kinase (FLT3) Mutation1somestatusstop reasonjust information to hide
Not AvailableNo Longer AvailableNot AvailableAcute Myeloid Leukemia / Aggressive Systemic Mastocytosis / FMS-Like Tyrosine Kinase 3 (FLT3)-Mutated Acute Myeloid Leukemia / Mast Cell Leukemia (MCL) / Systemic Mastocytosis With an Associated Hematological Neoplasm1somestatusstop reasonjust information to hide
3Active Not RecruitingTreatmentAcute Myeloid Leukemia / Myelodysplastic Syndrome With Excess Blasts-2 (MDS-EB-2)1somestatusstop reasonjust information to hide

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage Forms
FormRouteStrength
Capsule, liquid filledOral25 mg/1
CapsuleOral25 mg
CapsuleOral
Capsule, liquid filledOral25 mg
Prices
Not Available
Patents
Patent NumberPediatric ExtensionApprovedExpires (estimated)Region
US8575146No2013-11-052030-12-02US flag
US7973031No2011-07-052024-10-17US flag
US8222244No2012-07-172022-10-29US flag

Properties

State
Solid
Experimental Properties
PropertyValueSource
melting point (°C)235-260Alfa Aesar MSDS
water solubility<1mg/mLAbmole MSDS
logP5.89Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.0157 mg/mLALOGPS
logP4.52ALOGPS
logP5.43Chemaxon
logS-4.6ALOGPS
pKa (Strongest Acidic)13.45Chemaxon
pKa (Strongest Basic)-0.83Chemaxon
Physiological Charge0Chemaxon
Hydrogen Acceptor Count4Chemaxon
Hydrogen Donor Count1Chemaxon
Polar Surface Area77.73 Å2Chemaxon
Rotatable Bond Count3Chemaxon
Refractivity162.61 m3·mol-1Chemaxon
Polarizability60.58 Å3Chemaxon
Number of Rings9Chemaxon
Bioavailability0Chemaxon
Rule of FiveNoChemaxon
Ghose FilterNoChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleNoChemaxon
Predicted ADMET Features
Not Available

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-00xr-0300790000-4ec8d1577ca0af0055ee
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-014i-0000490000-a6791c7470f840aa0633
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-00di-0300390000-e6a8595808c298599bb7
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-017r-0000950000-2de28c7c76160139a545
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-0200-9704070000-02affb55aa78ab9123b6
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-0g29-4201940000-0e4157981d1b1ebe6112
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-243.868
predicted
DeepCCS 1.0 (2019)
[M+H]+245.76341
predicted
DeepCCS 1.0 (2019)
[M+Na]+251.82526
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays diverse roles in neuronal cells and eye tissues, such as regulation of the neuronal receptors GRIA4/GLUR4 and GRIN1/NMDAR1, modulation of receptors and neuronal functions related to sensitivity to opiates, pain and alcohol, mediation of synaptic function and cell survival after ischemia, and inhibition of gap junction activity after oxidative stress. Binds and phosphorylates GRIA4/GLUR4 glutamate receptor and regulates its function by increasing plasma membrane-associated GRIA4 expression. In primary cerebellar neurons treated with the agonist 3,5-dihyidroxyphenylglycine, functions downstream of the metabotropic glutamate receptor GRM5/MGLUR5 and phosphorylates GRIN1/NMDAR1 receptor which plays a key role in synaptic plasticity, synaptogenesis, excitotoxicity, memory acquisition and learning. May be involved in the regulation of hippocampal long-term potentiation (LTP), but may be not necessary for the process of synaptic plasticity. May be involved in desensitization of mu-type opioid receptor-mediated G-protein activation in the spinal cord, and may be critical for the development and/or maintenance of morphine-induced reinforcing effects in the limbic forebrain. May modulate the functionality of mu-type-opioid receptors by participating in a signaling pathway which leads to the phosphorylation and degradation of opioid receptors. May also contributes to chronic morphine-induced changes in nociceptive processing. Plays a role in neuropathic pain mechanisms and contributes to the maintenance of the allodynia pain produced by peripheral inflammation. Plays an important role in initial sensitivity and tolerance to ethanol, by mediating the behavioral effects of ethanol as well as the effects of this drug on the GABA(A) receptors. During and after cerebral ischemia modulate neurotransmission and cell survival in synaptic membranes, and is involved in insulin-induced inhibition of necrosis, an important mechanism for minimizing ischemic injury. Required for the elimination of multiple climbing fibers during innervation of Purkinje cells in developing cerebellum. Is activated in lens epithelial cells upon hydrogen peroxide treatment, and phosphorylates connexin-43 (GJA1/CX43), resulting in disassembly of GJA1 gap junction plaques and inhibition of gap junction activity which could provide a protective effect against oxidative stress (By similarity). Phosphorylates p53/TP53 and promotes p53/TP53-dependent apoptosis in response to DNA damage. Involved in the phase resetting of the cerebral cortex circadian clock during temporally restricted feeding. Stabilizes the core clock component BMAL1 by interfering with its ubiquitination, thus suppressing its degradation, resulting in phase resetting of the cerebral cortex clock (By similarity). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231)
Specific Function
ATP binding
Gene Name
PRKCG
Uniprot ID
P05129
Uniprot Name
Protein kinase C gamma type
Molecular Weight
78447.23 Da
References
  1. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Antagonist
Inhibitor
General Function
Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that is involved in positive and negative regulation of cell proliferation, apoptosis, differentiation, migration and adhesion, tumorigenesis, cardiac hypertrophy, angiogenesis, platelet function and inflammation, by directly phosphorylating targets such as RAF1, BCL2, CSPG4, TNNT2/CTNT, or activating signaling cascade involving MAPK1/3 (ERK1/2) and RAP1GAP. Involved in cell proliferation and cell growth arrest by positive and negative regulation of the cell cycle. Can promote cell growth by phosphorylating and activating RAF1, which mediates the activation of the MAPK/ERK signaling cascade, and/or by up-regulating CDKN1A, which facilitates active cyclin-dependent kinase (CDK) complex formation in glioma cells. In intestinal cells stimulated by the phorbol ester PMA, can trigger a cell cycle arrest program which is associated with the accumulation of the hyper-phosphorylated growth-suppressive form of RB1 and induction of the CDK inhibitors CDKN1A and CDKN1B. Exhibits anti-apoptotic function in glioma cells and protects them from apoptosis by suppressing the p53/TP53-mediated activation of IGFBP3, and in leukemia cells mediates anti-apoptotic action by phosphorylating BCL2. During macrophage differentiation induced by macrophage colony-stimulating factor (CSF1), is translocated to the nucleus and is associated with macrophage development. After wounding, translocates from focal contacts to lamellipodia and participates in the modulation of desmosomal adhesion. Plays a role in cell motility by phosphorylating CSPG4, which induces association of CSPG4 with extensive lamellipodia at the cell periphery and polarization of the cell accompanied by increases in cell motility. During chemokine-induced CD4(+) T cell migration, phosphorylates CDC42-guanine exchange factor DOCK8 resulting in its dissociation from LRCH1 and the activation of GTPase CDC42 (PubMed:28028151). Is highly expressed in a number of cancer cells where it can act as a tumor promoter and is implicated in malignant phenotypes of several tumors such as gliomas and breast cancers. Negatively regulates myocardial contractility and positively regulates angiogenesis, platelet aggregation and thrombus formation in arteries. Mediates hypertrophic growth of neonatal cardiomyocytes, in part through a MAPK1/3 (ERK1/2)-dependent signaling pathway, and upon PMA treatment, is required to induce cardiomyocyte hypertrophy up to heart failure and death, by increasing protein synthesis, protein-DNA ratio and cell surface area. Regulates cardiomyocyte function by phosphorylating cardiac troponin T (TNNT2/CTNT), which induces significant reduction in actomyosin ATPase activity, myofilament calcium sensitivity and myocardial contractility. In angiogenesis, is required for full endothelial cell migration, adhesion to vitronectin (VTN), and vascular endothelial growth factor A (VEGFA)-dependent regulation of kinase activation and vascular tube formation. Involved in the stabilization of VEGFA mRNA at post-transcriptional level and mediates VEGFA-induced cell proliferation. In the regulation of calcium-induced platelet aggregation, mediates signals from the CD36/GP4 receptor for granule release, and activates the integrin heterodimer ITGA2B-ITGB3 through the RAP1GAP pathway for adhesion. During response to lipopolysaccharides (LPS), may regulate selective LPS-induced macrophage functions involved in host defense and inflammation. But in some inflammatory responses, may negatively regulate NF-kappa-B-induced genes, through IL1A-dependent induction of NF-kappa-B inhibitor alpha (NFKBIA/IKBA). Upon stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA), phosphorylates EIF4G1, which modulates EIF4G1 binding to MKNK1 and may be involved in the regulation of EIF4E phosphorylation. Phosphorylates KIT, leading to inhibition of KIT activity. Phosphorylates ATF2 which promotes cooperation between ATF2 and JUN, activating transcription. Phosphorylates SOCS2 at 'Ser-52' facilitating its ubiquitination and proteasomal degradation (By similarity). Phosphorylates KLHL3 in response to angiotensin II signaling, decreasing the interaction between KLHL3 and WNK4 (PubMed:25313067). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231)
Specific Function
ATP binding
Gene Name
PRKCA
Uniprot ID
P17252
Uniprot Name
Protein kinase C alpha type
Molecular Weight
76749.445 Da
References
  1. Millward MJ, House C, Bowtell D, Webster L, Olver IN, Gore M, Copeman M, Lynch K, Yap A, Wang Y, Cohen PS, Zalcberg J: The multikinase inhibitor midostaurin (PKC412A) lacks activity in metastatic melanoma: a phase IIA clinical and biologic study. Br J Cancer. 2006 Oct 9;95(7):829-34. Epub 2006 Sep 12. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Antagonist
Inhibitor
General Function
Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFC and VEGFD. Plays an essential role in the regulation of angiogenesis, vascular development, vascular permeability, and embryonic hematopoiesis. Promotes proliferation, survival, migration and differentiation of endothelial cells. Promotes reorganization of the actin cytoskeleton. Isoforms lacking a transmembrane domain, such as isoform 2 and isoform 3, may function as decoy receptors for VEGFA, VEGFC and/or VEGFD. Isoform 2 plays an important role as negative regulator of VEGFA- and VEGFC-mediated lymphangiogenesis by limiting the amount of free VEGFA and/or VEGFC and preventing their binding to FLT4. Modulates FLT1 and FLT4 signaling by forming heterodimers. Binding of vascular growth factors to isoform 1 leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, reorganization of the actin cytoskeleton and activation of PTK2/FAK1. Required for VEGFA-mediated induction of NOS2 and NOS3, leading to the production of the signaling molecule nitric oxide (NO) by endothelial cells. Phosphorylates PLCG1. Promotes phosphorylation of FYN, NCK1, NOS3, PIK3R1, PTK2/FAK1 and SRC
Specific Function
ATP binding
Gene Name
KDR
Uniprot ID
P35968
Uniprot Name
Vascular endothelial growth factor receptor 2
Molecular Weight
151525.555 Da
References
  1. Millward MJ, House C, Bowtell D, Webster L, Olver IN, Gore M, Copeman M, Lynch K, Yap A, Wang Y, Cohen PS, Zalcberg J: The multikinase inhibitor midostaurin (PKC412A) lacks activity in metastatic melanoma: a phase IIA clinical and biologic study. Br J Cancer. 2006 Oct 9;95(7):829-34. Epub 2006 Sep 12. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Antagonist
Inhibitor
General Function
Tyrosine-protein kinase that acts as a cell-surface receptor for PDGFA, PDGFB and PDGFC and plays an essential role in the regulation of embryonic development, cell proliferation, survival and chemotaxis. Depending on the context, promotes or inhibits cell proliferation and cell migration. Plays an important role in the differentiation of bone marrow-derived mesenchymal stem cells. Required for normal skeleton development and cephalic closure during embryonic development. Required for normal development of the mucosa lining the gastrointestinal tract, and for recruitment of mesenchymal cells and normal development of intestinal villi. Plays a role in cell migration and chemotaxis in wound healing. Plays a role in platelet activation, secretion of agonists from platelet granules, and in thrombin-induced platelet aggregation. Binding of its cognate ligands - homodimeric PDGFA, homodimeric PDGFB, heterodimers formed by PDGFA and PDGFB or homodimeric PDGFC -leads to the activation of several signaling cascades; the response depends on the nature of the bound ligand and is modulated by the formation of heterodimers between PDGFRA and PDGFRB. Phosphorylates PIK3R1, PLCG1, and PTPN11. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, mobilization of cytosolic Ca(2+) and the activation of protein kinase C. Phosphorylates PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, and thereby mediates activation of the AKT1 signaling pathway. Mediates activation of HRAS and of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1. Promotes activation of STAT family members STAT1, STAT3 and STAT5A and/or STAT5B. Receptor signaling is down-regulated by protein phosphatases that dephosphorylate the receptor and its down-stream effectors, and by rapid internalization of the activated receptor
Specific Function
ATP binding
Gene Name
PDGFRA
Uniprot ID
P16234
Uniprot Name
Platelet-derived growth factor receptor alpha
Molecular Weight
122668.46 Da
References
  1. Millward MJ, House C, Bowtell D, Webster L, Olver IN, Gore M, Copeman M, Lynch K, Yap A, Wang Y, Cohen PS, Zalcberg J: The multikinase inhibitor midostaurin (PKC412A) lacks activity in metastatic melanoma: a phase IIA clinical and biologic study. Br J Cancer. 2006 Oct 9;95(7):829-34. Epub 2006 Sep 12. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Antagonist
Inhibitor
General Function
Tyrosine-protein kinase that acts as a cell-surface receptor for homodimeric PDGFB and PDGFD and for heterodimers formed by PDGFA and PDGFB, and plays an essential role in the regulation of embryonic development, cell proliferation, survival, differentiation, chemotaxis and migration. Plays an essential role in blood vessel development by promoting proliferation, migration and recruitment of pericytes and smooth muscle cells to endothelial cells. Plays a role in the migration of vascular smooth muscle cells and the formation of neointima at vascular injury sites. Required for normal development of the cardiovascular system. Required for normal recruitment of pericytes (mesangial cells) in the kidney glomerulus, and for normal formation of a branched network of capillaries in kidney glomeruli. Promotes rearrangement of the actin cytoskeleton and the formation of membrane ruffles. Binding of its cognate ligands - homodimeric PDGFB, heterodimers formed by PDGFA and PDGFB or homodimeric PDGFD -leads to the activation of several signaling cascades; the response depends on the nature of the bound ligand and is modulated by the formation of heterodimers between PDGFRA and PDGFRB. Phosphorylates PLCG1, PIK3R1, PTPN11, RASA1/GAP, CBL, SHC1 and NCK1. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, mobilization of cytosolic Ca(2+) and the activation of protein kinase C. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to the activation of the AKT1 signaling pathway. Phosphorylation of SHC1, or of the C-terminus of PTPN11, creates a binding site for GRB2, resulting in the activation of HRAS, RAF1 and down-stream MAP kinases, including MAPK1/ERK2 and/or MAPK3/ERK1. Promotes phosphorylation and activation of SRC family kinases. Promotes phosphorylation of PDCD6IP/ALIX and STAM. Receptor signaling is down-regulated by protein phosphatases that dephosphorylate the receptor and its down-stream effectors, and by rapid internalization of the activated receptor
Specific Function
ATP binding
Gene Name
PDGFRB
Uniprot ID
P09619
Uniprot Name
Platelet-derived growth factor receptor beta
Molecular Weight
123966.895 Da
References
  1. Millward MJ, House C, Bowtell D, Webster L, Olver IN, Gore M, Copeman M, Lynch K, Yap A, Wang Y, Cohen PS, Zalcberg J: The multikinase inhibitor midostaurin (PKC412A) lacks activity in metastatic melanoma: a phase IIA clinical and biologic study. Br J Cancer. 2006 Oct 9;95(7):829-34. Epub 2006 Sep 12. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Antagonist
Inhibitor
General Function
Tyrosine-protein kinase that acts as a cell-surface receptor for the cytokine FLT3LG and regulates differentiation, proliferation and survival of hematopoietic progenitor cells and of dendritic cells. Promotes phosphorylation of SHC1 and AKT1, and activation of the downstream effector MTOR. Promotes activation of RAS signaling and phosphorylation of downstream kinases, including MAPK1/ERK2 and/or MAPK3/ERK1. Promotes phosphorylation of FES, FER, PTPN6/SHP, PTPN11/SHP-2, PLCG1, and STAT5A and/or STAT5B. Activation of wild-type FLT3 causes only marginal activation of STAT5A or STAT5B. Mutations that cause constitutive kinase activity promote cell proliferation and resistance to apoptosis via the activation of multiple signaling pathways
Specific Function
ATP binding
Gene Name
FLT3
Uniprot ID
P36888
Uniprot Name
Receptor-type tyrosine-protein kinase FLT3
Molecular Weight
112902.51 Da
References
  1. Millward MJ, House C, Bowtell D, Webster L, Olver IN, Gore M, Copeman M, Lynch K, Yap A, Wang Y, Cohen PS, Zalcberg J: The multikinase inhibitor midostaurin (PKC412A) lacks activity in metastatic melanoma: a phase IIA clinical and biologic study. Br J Cancer. 2006 Oct 9;95(7):829-34. Epub 2006 Sep 12. [Article]
  2. Gallogly MM, Lazarus HM: Midostaurin: an emerging treatment for acute myeloid leukemia patients. J Blood Med. 2016 Apr 19;7:73-83. doi: 10.2147/JBM.S100283. eCollection 2016. [Article]
  3. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Antagonist
Inhibitor
General Function
Tyrosine-protein kinase that acts as a cell-surface receptor for the cytokine KITLG/SCF and plays an essential role in the regulation of cell survival and proliferation, hematopoiesis, stem cell maintenance, gametogenesis, mast cell development, migration and function, and in melanogenesis. In response to KITLG/SCF binding, KIT can activate several signaling pathways. Phosphorylates PIK3R1, PLCG1, SH2B2/APS and CBL. Activates the AKT1 signaling pathway by phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase. Activated KIT also transmits signals via GRB2 and activation of RAS, RAF1 and the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1. Promotes activation of STAT family members STAT1, STAT3, STAT5A and STAT5B. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. KIT signaling is modulated by protein phosphatases, and by rapid internalization and degradation of the receptor. Activated KIT promotes phosphorylation of the protein phosphatases PTPN6/SHP-1 and PTPRU, and of the transcription factors STAT1, STAT3, STAT5A and STAT5B. Promotes phosphorylation of PIK3R1, CBL, CRK (isoform Crk-II), LYN, MAPK1/ERK2 and/or MAPK3/ERK1, PLCG1, SRC and SHC1
Specific Function
ATP binding
Gene Name
KIT
Uniprot ID
P10721
Uniprot Name
Mast/stem cell growth factor receptor Kit
Molecular Weight
109863.655 Da
References
  1. Millward MJ, House C, Bowtell D, Webster L, Olver IN, Gore M, Copeman M, Lynch K, Yap A, Wang Y, Cohen PS, Zalcberg J: The multikinase inhibitor midostaurin (PKC412A) lacks activity in metastatic melanoma: a phase IIA clinical and biologic study. Br J Cancer. 2006 Oct 9;95(7):829-34. Epub 2006 Sep 12. [Article]

Enzymes

Kind
Protein group
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
Inhibitor
Inducer
General Function
A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981)
Specific Function
1,8-cineole 2-exo-monooxygenase activity

Components:
References
  1. He H, Tran P, Gu H, Tedesco V, Zhang J, Lin W, Gatlik E, Klein K, Heimbach T: Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab Dispos. 2017 May;45(5):540-555. doi: 10.1124/dmd.116.072744. Epub 2017 Mar 7. [Article]
  2. FDA Approved Drug Products: RYDAPT (midostaurin) capsules [Link]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
Inducer
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:19965576, PubMed:9435160). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:19965576, PubMed:9435160). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:11555828, PubMed:12865317). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2 (PubMed:11555828, PubMed:12865317). Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). May act as a major enzyme for all-trans retinoic acid biosynthesis in the liver. Catalyzes two successive oxidative transformation of all-trans retinol to all-trans retinal and then to the active form all-trans retinoic acid (PubMed:10681376). Primarily catalyzes stereoselective epoxidation of the last double bond of polyunsaturated fatty acids (PUFA), displaying a strong preference for the (R,S) stereoisomer (PubMed:19965576). Catalyzes bisallylic hydroxylation and omega-1 hydroxylation of PUFA (PubMed:9435160). May also participate in eicosanoids metabolism by converting hydroperoxide species into oxo metabolites (lipoxygenase-like reaction, NADPH-independent) (PubMed:21068195). Plays a role in the oxidative metabolism of xenobiotics. Catalyzes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin (PubMed:14725854). Metabolizes caffeine via N3-demethylation (Probable)
Specific Function
aromatase activity
Gene Name
CYP1A2
Uniprot ID
P05177
Uniprot Name
Cytochrome P450 1A2
Molecular Weight
58406.915 Da
References
  1. He H, Tran P, Gu H, Tedesco V, Zhang J, Lin W, Gatlik E, Klein K, Heimbach T: Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab Dispos. 2017 May;45(5):540-555. doi: 10.1124/dmd.116.072744. Epub 2017 Mar 7. [Article]
  2. FDA Approved Drug Products: RYDAPT (midostaurin) capsules [Link]
  3. Midostaurin fDA [File]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inducer
General Function
A cytochrome P450 monooxygenase involved in the metabolism of endocannabinoids and steroids (PubMed:12865317, PubMed:21289075). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the epoxidation of double bonds of arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:21289075). Hydroxylates steroid hormones, including testosterone at C-16 and estrogens at C-2 (PubMed:12865317, PubMed:21289075). Plays a role in the oxidative metabolism of xenobiotics, including plant lipids and drugs (PubMed:11695850, PubMed:22909231). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850)
Specific Function
anandamide 11,12 epoxidase activity
Gene Name
CYP2B6
Uniprot ID
P20813
Uniprot Name
Cytochrome P450 2B6
Molecular Weight
56277.81 Da
References
  1. He H, Tran P, Gu H, Tedesco V, Zhang J, Lin W, Gatlik E, Klein K, Heimbach T: Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab Dispos. 2017 May;45(5):540-555. doi: 10.1124/dmd.116.072744. Epub 2017 Mar 7. [Article]
  2. FDA Approved Drug Products: RYDAPT (midostaurin) capsules [Link]
  3. Midostaurin FDA Label [File]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
Inducer
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Primarily catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) with a preference for the last double bond (PubMed:15766564, PubMed:19965576, PubMed:7574697). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes all trans-retinoic acid toward its 4-hydroxylated form (PubMed:11093772). Displays 16-alpha hydroxylase activity toward estrogen steroid hormones, 17beta-estradiol (E2) and estrone (E1) (PubMed:14559847). Plays a role in the oxidative metabolism of xenobiotics. It is the principal enzyme responsible for the metabolism of the anti-cancer drug paclitaxel (taxol) (PubMed:26427316)
Specific Function
arachidonic acid epoxygenase activity
Gene Name
CYP2C8
Uniprot ID
P10632
Uniprot Name
Cytochrome P450 2C8
Molecular Weight
55824.275 Da
References
  1. He H, Tran P, Gu H, Tedesco V, Zhang J, Lin W, Gatlik E, Klein K, Heimbach T: Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab Dispos. 2017 May;45(5):540-555. doi: 10.1124/dmd.116.072744. Epub 2017 Mar 7. [Article]
  2. Midostaurin EMA Label [File]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
Inducer
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids and steroids (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:15766564, PubMed:19965576, PubMed:7574697, PubMed:9866708). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Exhibits low catalytic activity for the formation of catechol estrogens from 17beta-estradiol (E2) and estrone (E1), namely 2-hydroxy E1 and E2 (PubMed:12865317). Catalyzes bisallylic hydroxylation and hydroxylation with double-bond migration of polyunsaturated fatty acids (PUFA) (PubMed:9435160, PubMed:9866708). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan (PubMed:25994031)
Specific Function
(R)-limonene 6-monooxygenase activity
Gene Name
CYP2C9
Uniprot ID
P11712
Uniprot Name
Cytochrome P450 2C9
Molecular Weight
55627.365 Da
References
  1. He H, Tran P, Gu H, Tedesco V, Zhang J, Lin W, Gatlik E, Klein K, Heimbach T: Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab Dispos. 2017 May;45(5):540-555. doi: 10.1124/dmd.116.072744. Epub 2017 Mar 7. [Article]
  2. Midostaurin FDA label [File]
  3. Midostaurin EMA label [File]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
Inducer
General Function
A cytochrome P450 monooxygenase involved in the metabolism of polyunsaturated fatty acids (PUFA) (PubMed:18577768, PubMed:19965576, PubMed:20972997). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18577768, PubMed:19965576, PubMed:20972997). Catalyzes the hydroxylation of carbon-hydrogen bonds. Hydroxylates PUFA specifically at the omega-1 position (PubMed:18577768). Catalyzes the epoxidation of double bonds of PUFA (PubMed:19965576, PubMed:20972997). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine. Hydroxylates fenbendazole at the 4' position (PubMed:23959307)
Specific Function
(R)-limonene 6-monooxygenase activity
Gene Name
CYP2C19
Uniprot ID
P33261
Uniprot Name
Cytochrome P450 2C19
Molecular Weight
55944.565 Da
References
  1. He H, Tran P, Gu H, Tedesco V, Zhang J, Lin W, Gatlik E, Klein K, Heimbach T: Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab Dispos. 2017 May;45(5):540-555. doi: 10.1124/dmd.116.072744. Epub 2017 Mar 7. [Article]
  2. Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism and Excretion Studies of a BDDCS II Drug [File]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of fatty acids, steroids and retinoids (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:19965576, PubMed:20972997). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 20-hydroxyeicosatetraenoic acid ethanolamide (20-HETE-EA) and 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:18698000, PubMed:21289075). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Catalyzes the oxidative transformations of all-trans retinol to all-trans retinal, a precursor for the active form all-trans-retinoic acid (PubMed:10681376). Also involved in the oxidative metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants
Specific Function
anandamide 11,12 epoxidase activity
Gene Name
CYP2D6
Uniprot ID
P10635
Uniprot Name
Cytochrome P450 2D6
Molecular Weight
55768.94 Da
References
  1. He H, Tran P, Gu H, Tedesco V, Zhang J, Lin W, Gatlik E, Klein K, Heimbach T: Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab Dispos. 2017 May;45(5):540-555. doi: 10.1124/dmd.116.072744. Epub 2017 Mar 7. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
A cytochrome P450 monooxygenase involved in the metabolism of fatty acids (PubMed:10553002, PubMed:18577768). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10553002, PubMed:18577768). Catalyzes the hydroxylation of carbon-hydrogen bonds. Hydroxylates fatty acids specifically at the omega-1 position displaying the highest catalytic activity for saturated fatty acids (PubMed:10553002, PubMed:18577768). May be involved in the oxidative metabolism of xenobiotics (Probable)
Specific Function
4-nitrophenol 2-monooxygenase activity
Gene Name
CYP2E1
Uniprot ID
P05181
Uniprot Name
Cytochrome P450 2E1
Molecular Weight
56848.42 Da
References
  1. He H, Tran P, Gu H, Tedesco V, Zhang J, Lin W, Gatlik E, Klein K, Heimbach T: Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab Dispos. 2017 May;45(5):540-555. doi: 10.1124/dmd.116.072744. Epub 2017 Mar 7. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
Inhibitor
Inducer
General Function
A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981)
Specific Function
1,8-cineole 2-exo-monooxygenase activity
Gene Name
CYP3A4
Uniprot ID
P08684
Uniprot Name
Cytochrome P450 3A4
Molecular Weight
57342.67 Da
References
  1. He H, Tran P, Gu H, Tedesco V, Zhang J, Lin W, Gatlik E, Klein K, Heimbach T: Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism, and Excretion Studies of a BDDCS II Drug. Drug Metab Dispos. 2017 May;45(5):540-555. doi: 10.1124/dmd.116.072744. Epub 2017 Mar 7. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inducer
General Function
A cytochrome P450 monooxygenase involved in the metabolism of steroid hormones and vitamins (PubMed:10681376, PubMed:11093772, PubMed:12865317, PubMed:2732228). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:10681376, PubMed:11093772, PubMed:12865317, PubMed:2732228). Exhibits high catalytic activity for the formation of catechol estrogens from 17beta-estradiol (E2) and estrone (E1), namely 2-hydroxy E1 and E2 (PubMed:12865317). Catalyzes 6beta-hydroxylation of the steroid hormones testosterone, progesterone, and androstenedione (PubMed:2732228). Catalyzes the oxidative conversion of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes all trans-retinoic acid (atRA) to 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Also involved in the oxidative metabolism of xenobiotics, including calcium channel blocking drug nifedipine and immunosuppressive drug cyclosporine (PubMed:2732228)
Specific Function
aromatase activity
Gene Name
CYP3A5
Uniprot ID
P20815
Uniprot Name
Cytochrome P450 3A5
Molecular Weight
57108.065 Da
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inducer
General Function
A cytochrome P450 monooxygenase involved in the metabolism of steroid hormones and vitamins during embryogenesis (PubMed:11093772, PubMed:12865317, PubMed:14559847, PubMed:17178770, PubMed:9555064). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:11093772, PubMed:12865317, PubMed:14559847, PubMed:17178770, PubMed:9555064). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes 3beta-hydroxyandrost-5-en-17-one (dehydroepiandrosterone, DHEA), a precursor in the biosynthesis of androgen and estrogen steroid hormones (PubMed:17178770, PubMed:9555064). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1), particularly D-ring hydroxylated estrone at the C16-alpha position (PubMed:12865317, PubMed:14559847). Mainly hydroxylates all trans-retinoic acid (atRA) to 4-hydroxyretinoate and may play a role in atRA clearance during fetal development (PubMed:11093772). Also involved in the oxidative metabolism of xenobiotics including anticonvulsants (PubMed:9555064)
Specific Function
all-trans retinoic acid 18-hydroxylase activity
Gene Name
CYP3A7
Uniprot ID
P24462
Uniprot Name
Cytochrome P450 3A7
Molecular Weight
57469.95 Da
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inducer
General Function
Exhibits low testosterone 6-beta-hydroxylase activity
Specific Function
aromatase activity
Gene Name
CYP3A43
Uniprot ID
Q9HB55
Uniprot Name
Cytochrome P450 3A43
Molecular Weight
57669.21 Da

Drug created at March 19, 2008 16:39 / Updated at August 26, 2024 19:23