Amoxapine
Explore a selection of our essential drug information below, or:
Identification
- Summary
Amoxapine is a tricyclic antidepressant used in the treatment of neurotic or reactive depressive disorders and endogenous or psychotic depression.
- Generic Name
- Amoxapine
- DrugBank Accession Number
- DB00543
- Background
Amoxapine, the N-demethylated derivative of the antipsychotic agent loxapine, is a dibenzoxazepine-derivative tricyclic antidepressant (TCA). TCAs are structurally similar to phenothiazines. They contain a tricyclic ring system with an alkyl amine substituent on the central ring. In non-depressed individuals, amoxapine does not affect mood or arousal, but may cause sedation. In depressed individuals, amoxapine exerts a positive effect on mood. TCAs are potent inhibitors of serotonin and norepinephrine reuptake. In addition, TCAs down-regulate cerebral cortical β-adrenergic receptors and sensitize post-synaptic serotonergic receptors with chronic use. The antidepressant effects of TCAs are thought to be due to an overall increase in serotonergic neurotransmission. TCAs also block histamine H1 receptors, α1-adrenergic receptors and muscarinic receptors, which accounts for their sedative, hypotensive and anticholinergic effects (e.g. blurred vision, dry mouth, constipation, urinary retention), respectively. See toxicity section below for a complete listing of side effects. Amoxapine may be used to treat neurotic and reactive depressive disorders, endogenous and psychotic depression, and mixed symptoms of depression and anxiety or agitation.
- Type
- Small Molecule
- Groups
- Approved
- Structure
- Weight
- Average: 313.781
Monoisotopic: 313.098189856 - Chemical Formula
- C17H16ClN3O
- Synonyms
- 2-Chloro-11-(1-piperazinyl)dibenz(b,f)(1,4)oxazepine
- Amoxapin
- Amoxapina
- Amoxapine
- Amoxapinum
- Amoxepine
- Desmethylloxapin
- External IDs
- CL 67,772
- CL 67772
- CL-67,772
- CL-67772
Pharmacology
- Indication
For the relief of symptoms of depression in patients with neurotic or reactive depressive disorders as well as endogenous and psychotic depressions. May also be used to treat depression accompanied by anxiety or agitation.
Reduce drug development failure ratesBuild, train, & validate machine-learning modelswith evidence-based and structured datasets.Build, train, & validate predictive machine-learning models with structured datasets.- Associated Conditions
Indication Type Indication Combined Product Details Approval Level Age Group Patient Characteristics Dose Form Treatment of Agitation •••••••••••• Treatment of Anxiety •••••••••••• Treatment of Endogenous depression •••••••••••• Treatment of Neurotic depression •••••••••••• Treatment of Psychotic depression •••••••••••• - Contraindications & Blackbox Warnings
- Prevent Adverse Drug Events TodayTap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.Avoid life-threatening adverse drug events with our Clinical API
- Pharmacodynamics
Amoxapine is a tricyclic antidepressant of the dibenzoxazepine class, chemically distinct from the dibenzodiazepines, dibenzocycloheptenes, and dibenzoxepines. It has a mild sedative component to its action. The mechanism of its clinical action in man is not well understood. In animals, amoxapine reduced the uptake of nor-epinephirine and serotonin and blocked the response of dopamine receptors to dopamine. Amoxapine is not a monoamine oxidase inhibitor. Clinical studies have demonstrated that amoxapine has a more rapid onset of action than either amitriptyline or imipramine
- Mechanism of action
Amoxapine acts by decreasing the reuptake of norepinephrine and serotonin (5-HT).
- Absorption
Rapidly and almost completely absorbed from the GI tract. Peak plasma concentrations occur within 1-2 hours of oral administration of a single dose.
- Volume of distribution
Widely distributed in body tissues with highest concentrations found in lungs, spleen, kidneys, heart, and brain. Lower concentrations can be detected in testes and muscle.
- Protein binding
In vitro tests show that amoxapine binding to human plasma proteins is approximately 90%.
- Metabolism
Amoxapine is almost completely metabolized in the liver to its major metabolite, 8-hydroxyamoxapine, and a minor metabolite, 7-hydroxyamoxapine. Both metabolites are phamacologically inactive and have half-lives of approximately 30 and 6.5 hours, respectively.
Hover over products below to view reaction partners
- Route of elimination
60-69% of a single orally administered dose of amoxapine is excreted in urine, principally as conjugated metabolites. 7-18% of the dose is excrete feces mainly as unconjugated metabolites. Less than 5% of the dose is excreted as unchanged drug in urine.
- Half-life
8 hours
- Clearance
Not Available
- Adverse Effects
- Improve decision support & research outcomesWith structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!Improve decision support & research outcomes with our structured adverse effects data.
- Toxicity
Toxic manifestations of amoxapine overdosage differ significantly from those of other tricyclic antidepressants. Serious cardiovascular effects are seldom if ever observed. However, CNS effects, particularly grand mal convulsions, occur frequently, and treatment should be directed primarily toward prevention or control of seizures. Status epilepticus may develop and constitutes a neurologic emergency. Coma and acidosis are other serious complications of substantial amoxapine overdosage in some cases. Renal failure may develop two to five days after toxic overdose in patients who may appear otherwise recovered. Acute tubular necrosis with rhabdomuolysis and myolobinurla is the most common renal complication in such cases. This reaction probably occurs in less than 5% of overdose cases, and typically in those who have experienced multiple seizures.
- Pathways
- Not Available
- Pharmacogenomic Effects/ADRs
- Not Available
Interactions
- Drug Interactions
- This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
Drug Interaction Integrate drug-drug
interactions in your software1,2-Benzodiazepine The risk or severity of CNS depression can be increased when Amoxapine is combined with 1,2-Benzodiazepine. Abatacept The metabolism of Amoxapine can be increased when combined with Abatacept. Abiraterone The metabolism of Amoxapine can be decreased when combined with Abiraterone. Acarbose Amoxapine may decrease the hypoglycemic activities of Acarbose. Acebutolol The metabolism of Amoxapine can be decreased when combined with Acebutolol. - Food Interactions
- Avoid alcohol.
- Take with food. Food reduces irritation.
Products
- Drug product information from 10+ global regionsOur datasets provide approved product information including:dosage, form, labeller, route of administration, and marketing period.Access drug product information from over 10 global regions.
- International/Other Brands
- Adisen (Kun Wha) / Amolife / Amoxan (Wyeth KK) / Asendin / Asendis / Défanyl (Eisai) / Demolox (Wyeth) / Oxamine (Psyco Remedies) / Oxcap
- Brand Name Prescription Products
Name Dosage Strength Route Labeller Marketing Start Marketing End Region Image Asendin - Tab 100mg Tablet 100 mg Oral Wyeth Ayerst Canada Inc. 1999-04-12 2002-06-10 Canada Asendin - Tab 25mg Tablet 25 mg / tab Oral Wyeth Ayerst Canada Inc. 1997-02-04 2000-08-02 Canada Asendin - Tab 50mg Tablet 50 mg / tab Oral Wyeth Ayerst Canada Inc. 1997-04-29 2001-12-12 Canada Asendin Tab 100mg Tablet 100 mg / tab Oral Lederle Cyanamid Canada Inc. 1981-12-31 1999-04-12 Canada Asendin Tab 25mg Tablet 25 mg / tab Oral Lederle Cyanamid Canada Inc. 1981-12-31 1997-08-14 Canada - Generic Prescription Products
Name Dosage Strength Route Labeller Marketing Start Marketing End Region Image Amoxapine Tablet 100 mg/1 Oral Actavis Pharma, Inc. 1992-08-28 Not applicable US Amoxapine Tablet 50 mg/1 Oral Physicians Total Care, Inc. 2011-05-12 Not applicable US Amoxapine Tablet 150 mg/1 Oral Chartwell Rx, Llc 1991-06-28 Not applicable US Amoxapine Tablet 25 mg/1 Oral Chartwell Rx, Llc 1991-06-28 Not applicable US Amoxapine Tablet 50 mg/1 Oral Actavis Pharma, Inc. 1992-08-28 Not applicable US
Categories
- ATC Codes
- N06AA17 — Amoxapine
- Drug Categories
- Adrenergic Agents
- Adrenergic alpha-1 Receptor Antagonists
- Adrenergic alpha-Antagonists
- Adrenergic Antagonists
- Adrenergic Uptake Inhibitors
- Agents producing tachycardia
- Agents that produce hypertension
- Agents that reduce seizure threshold
- Anticholinergic Agents
- Antidepressive Agents
- Antidepressive Agents Indicated for Depression
- Antidepressive Agents, Tetracyclic
- Antidepressive Agents, Tricyclic
- Antipsychotic Agents
- Central Nervous System Agents
- Central Nervous System Depressants
- Combined Inhibitors of Serotonin/Norepinephrine Reuptake
- Cytochrome P-450 CYP2D6 Inhibitors
- Cytochrome P-450 CYP2D6 Inhibitors (strength unknown)
- Cytochrome P-450 CYP2D6 Substrates
- Cytochrome P-450 CYP2D6 Substrates with a Narrow Therapeutic Index
- Cytochrome P-450 Enzyme Inhibitors
- Cytochrome P-450 Substrates
- Dibenzoxazepines
- Dopamine Agents
- Dopamine Antagonists
- Dopamine D2 Receptor Antagonists
- Heterocyclic Compounds, Fused-Ring
- Histamine Antagonists
- Histamine H1 Antagonists
- Membrane Transport Modulators
- Muscarinic Antagonists
- Narrow Therapeutic Index Drugs
- Nervous System
- Neurotoxic agents
- Neurotransmitter Agents
- Neurotransmitter Uptake Inhibitors
- Non-Selective Monoamine Reuptake Inhibitors
- P-glycoprotein inhibitors
- Potential QTc-Prolonging Agents
- Psychoanaleptics
- Psychotropic Drugs
- QTc Prolonging Agents
- Serotonergic Drugs Shown to Increase Risk of Serotonin Syndrome
- Serotonin 5-HT1 Receptor Antagonists
- Serotonin 5-HT1A Receptor Antagonists
- Serotonin 5-HT2 Receptor Antagonists
- Serotonin 5-HT2A Receptor Antagonists
- Serotonin 5-HT2C Receptor Antagonists
- Serotonin Agents
- Serotonin Modulators
- Serotonin Receptor Antagonists
- Chemical TaxonomyProvided by Classyfire
- Description
- This compound belongs to the class of organic compounds known as dibenzoxazepines. These are compounds containing a dibenzoxazepine moiety, which consists of two benzene connected by an oxazepine ring.
- Kingdom
- Organic compounds
- Super Class
- Organoheterocyclic compounds
- Class
- Benzoxazepines
- Sub Class
- Dibenzoxazepines
- Direct Parent
- Dibenzoxazepines
- Alternative Parents
- Diarylethers / Piperazines / Imidolactams / Benzenoids / Aryl chlorides / Propargyl-type 1,3-dipolar organic compounds / Oxacyclic compounds / Dialkylamines / Carboxamidines / Azacyclic compounds show 3 more
- Substituents
- 1,4-diazinane / Amidine / Amine / Aromatic heteropolycyclic compound / Aryl chloride / Aryl halide / Azacycle / Benzenoid / Carboxylic acid amidine / Diaryl ether show 17 more
- Molecular Framework
- Aromatic heteropolycyclic compounds
- External Descriptors
- dibenzooxazepine (CHEBI:2675)
- Affected organisms
- Humans and other mammals
Chemical Identifiers
- UNII
- R63VQ857OT
- CAS number
- 14028-44-5
- InChI Key
- QWGDMFLQWFTERH-UHFFFAOYSA-N
- InChI
- InChI=1S/C17H16ClN3O/c18-12-5-6-15-13(11-12)17(21-9-7-19-8-10-21)20-14-3-1-2-4-16(14)22-15/h1-6,11,19H,7-10H2
- IUPAC Name
- 13-chloro-10-(piperazin-1-yl)-2-oxa-9-azatricyclo[9.4.0.0^{3,8}]pentadeca-1(11),3,5,7,9,12,14-heptaene
- SMILES
- ClC1=CC2=C(OC3=CC=CC=C3N=C2N2CCNCC2)C=C1
References
- Synthesis Reference
Howell, C.F., Hardy, R.A., Jr. and Quinones, N.Q.; US. Patent 3,663,696; May 16, 1972; assigned to American Cyanamid Company Howell, C.F., Hardy, R.A., Jr. and Quinones, N.Q.; U.S. Patent 3,681,357; August 1, 1972; assigned to American Cyanamid Company
US3663696- General References
- Not Available
- External Links
- Human Metabolome Database
- HMDB0014683
- KEGG Drug
- D00228
- PubChem Compound
- 2170
- PubChem Substance
- 46509117
- ChemSpider
- 2085
- BindingDB
- 22870
- 722
- ChEBI
- 2675
- ChEMBL
- CHEMBL1113
- ZINC
- ZINC000000000931
- Therapeutic Targets Database
- DAP001149
- PharmGKB
- PA448405
- Guide to Pharmacology
- GtP Drug Page
- RxList
- RxList Drug Page
- Drugs.com
- Drugs.com Drug Page
- Wikipedia
- Amoxapine
Clinical Trials
- Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
Pharmacoeconomics
- Manufacturers
- Sandoz inc
- Watson laboratories inc
- Lederle laboratories div american cyanamid co
- Packagers
- Kaiser Foundation Hospital
- Major Pharmaceuticals
- Murfreesboro Pharmaceutical Nursing Supply
- Pharmaceutical Utilization Management Program VA Inc.
- Stat Rx Usa
- United Research Laboratories Inc.
- Watson Pharmaceuticals
- Dosage Forms
Form Route Strength Tablet Oral 100 mg/1 Tablet Oral 150 mg/1 Tablet Oral 25 mg/1 Tablet Oral 50 mg/1 Tablet Oral 100 mg Tablet Oral 25 mg / tab Tablet Oral 50 mg / tab Tablet Oral 100 mg / tab Solution Conjunctival; Ophthalmic 3 mg Solution Conjunctival; Ophthalmic 300000 mg - Prices
Unit description Cost Unit Amoxapine 30 150 mg tablet Bottle 82.15USD bottle Amoxapine 150 mg tablet 2.63USD tablet Amoxapine 100 mg tablet 1.7USD tablet Amoxapine 50 mg tablet 1.02USD tablet Amoxapine 25 mg tablet 0.63USD tablet DrugBank does not sell nor buy drugs. Pricing information is supplied for informational purposes only.- Patents
- Not Available
Properties
- State
- Solid
- Experimental Properties
Property Value Source melting point (°C) 175-176 Howell, C.F., Hardy, R.A., Jr. and Quinones, N.Q.; US. Patent 3,663,696; May 16, 1972; assigned to American Cyanamid Company Howell, C.F., Hardy, R.A., Jr. and Quinones, N.Q.; U.S. Patent 3,681,357; August 1, 1972; assigned to American Cyanamid Company logP 3.4 Not Available - Predicted Properties
Property Value Source Water Solubility 0.171 mg/mL ALOGPS logP 2.82 ALOGPS logP 3.08 Chemaxon logS -3.3 ALOGPS pKa (Strongest Basic) 8.83 Chemaxon Physiological Charge 1 Chemaxon Hydrogen Acceptor Count 3 Chemaxon Hydrogen Donor Count 1 Chemaxon Polar Surface Area 36.86 Å2 Chemaxon Rotatable Bond Count 0 Chemaxon Refractivity 89.82 m3·mol-1 Chemaxon Polarizability 32.83 Å3 Chemaxon Number of Rings 4 Chemaxon Bioavailability 1 Chemaxon Rule of Five Yes Chemaxon Ghose Filter Yes Chemaxon Veber's Rule Yes Chemaxon MDDR-like Rule No Chemaxon - Predicted ADMET Features
Property Value Probability Human Intestinal Absorption + 0.9928 Blood Brain Barrier + 0.988 Caco-2 permeable - 0.5488 P-glycoprotein substrate Substrate 0.8068 P-glycoprotein inhibitor I Inhibitor 0.7622 P-glycoprotein inhibitor II Inhibitor 0.8387 Renal organic cation transporter Inhibitor 0.6414 CYP450 2C9 substrate Non-substrate 0.7682 CYP450 2D6 substrate Substrate 0.8918 CYP450 3A4 substrate Substrate 0.5168 CYP450 1A2 substrate Inhibitor 0.9107 CYP450 2C9 inhibitor Non-inhibitor 0.907 CYP450 2D6 inhibitor Inhibitor 0.8931 CYP450 2C19 inhibitor Non-inhibitor 0.9025 CYP450 3A4 inhibitor Non-inhibitor 0.8308 CYP450 inhibitory promiscuity Low CYP Inhibitory Promiscuity 0.5472 Ames test Non AMES toxic 0.7277 Carcinogenicity Non-carcinogens 0.8159 Biodegradation Not ready biodegradable 1.0 Rat acute toxicity 2.9781 LD50, mol/kg Not applicable hERG inhibition (predictor I) Strong inhibitor 0.6376 hERG inhibition (predictor II) Inhibitor 0.7874
Spectra
- Mass Spec (NIST)
- Not Available
- Spectra
- Chromatographic Properties
Collision Cross Sections (CCS)
Adduct CCS Value (Å2) Source type Source [M-H]- 175.726809 predictedDarkChem Lite v0.1.0 [M-H]- 170.996968 predictedDarkChem Lite v0.1.0 [M-H]- 171.0407 predictedDeepCCS 1.0 (2019) [M+H]+ 176.658409 predictedDarkChem Lite v0.1.0 [M+H]+ 176.8661321 predictedDarkChem Lite v0.1.0 [M+H]+ 173.3987 predictedDeepCCS 1.0 (2019) [M+Na]+ 175.948509 predictedDarkChem Lite v0.1.0 [M+Na]+ 178.4408123 predictedDarkChem Lite v0.1.0 [M+Na]+ 179.49184 predictedDeepCCS 1.0 (2019)
Targets
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Inhibitor
- General Function
- Serotonin transporter that cotransports serotonin with one Na(+) ion in exchange for one K(+) ion and possibly one proton in an overall electroneutral transport cycle. Transports serotonin across the plasma membrane from the extracellular compartment to the cytosol thus limiting serotonin intercellular signaling (PubMed:10407194, PubMed:12869649, PubMed:21730057, PubMed:27049939, PubMed:27756841, PubMed:34851672). Essential for serotonin homeostasis in the central nervous system. In the developing somatosensory cortex, acts in glutamatergic neurons to control serotonin uptake and its trophic functions accounting for proper spatial organization of cortical neurons and elaboration of sensory circuits. In the mature cortex, acts primarily in brainstem raphe neurons to mediate serotonin uptake from the synaptic cleft back into the pre-synaptic terminal thus terminating serotonin signaling at the synapse (By similarity). Modulates mucosal serotonin levels in the gastrointestinal tract through uptake and clearance of serotonin in enterocytes. Required for enteric neurogenesis and gastrointestinal reflexes (By similarity). Regulates blood serotonin levels by ensuring rapid high affinity uptake of serotonin from plasma to platelets, where it is further stored in dense granules via vesicular monoamine transporters and then released upon stimulation (PubMed:17506858, PubMed:18317590). Mechanistically, the transport cycle starts with an outward-open conformation having Na1(+) and Cl(-) sites occupied. The binding of a second extracellular Na2(+) ion and serotonin substrate leads to structural changes to outward-occluded to inward-occluded to inward-open, where the Na2(+) ion and serotonin are released into the cytosol. Binding of intracellular K(+) ion induces conformational transitions to inward-occluded to outward-open and completes the cycle by releasing K(+) possibly together with a proton bound to Asp-98 into the extracellular compartment. Na1(+) and Cl(-) ions remain bound throughout the transport cycle (PubMed:10407194, PubMed:12869649, PubMed:21730057, PubMed:27049939, PubMed:27756841, PubMed:34851672). Additionally, displays serotonin-induced channel-like conductance for monovalent cations, mainly Na(+) ions. The channel activity is uncoupled from the transport cycle and may contribute to the membrane resting potential or excitability (By similarity)
- Specific Function
- Actin filament binding
- Gene Name
- SLC6A4
- Uniprot ID
- P31645
- Uniprot Name
- Sodium-dependent serotonin transporter
- Molecular Weight
- 70324.165 Da
References
- Spurlock G, Buckland P, O'Donovan M, McGuffin P: Lack of effect of antidepressant drugs on the levels of mRNAs encoding serotonergic receptors, synthetic enzymes and 5HT transporter. Neuropharmacology. 1994 Mar-Apr;33(3-4):433-40. [Article]
- Tatsumi M, Groshan K, Blakely RD, Richelson E: Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997 Dec 11;340(2-3):249-58. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Inhibitor
- General Function
- Mediates sodium- and chloride-dependent transport of norepinephrine (also known as noradrenaline) (PubMed:2008212, PubMed:8125921). Can also mediate sodium- and chloride-dependent transport of dopamine (PubMed:11093780, PubMed:8125921)
- Specific Function
- Actin binding
- Gene Name
- SLC6A2
- Uniprot ID
- P23975
- Uniprot Name
- Sodium-dependent noradrenaline transporter
- Molecular Weight
- 69331.42 Da
References
- Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [Article]
- Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [Article]
- Tatsumi M, Groshan K, Blakely RD, Richelson E: Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997 Dec 11;340(2-3):249-58. [Article]
- Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- Dopamine receptor whose activity is mediated by G proteins which inhibit adenylyl cyclase (PubMed:21645528). Positively regulates postnatal regression of retinal hyaloid vessels via suppression of VEGFR2/KDR activity, downstream of OPN5 (By similarity)
- Specific Function
- Dopamine binding
- Gene Name
- DRD2
- Uniprot ID
- P14416
- Uniprot Name
- D(2) dopamine receptor
- Molecular Weight
- 50618.91 Da
References
- Wei HB, Niu XY: [Comparison of the affinities of amoxapine and loxapine for various receptors in rat brain and the receptor down-regulation after chronic administration]. Yao Xue Xue Bao. 1990;25(12):881-5. [Article]
- Nasu R, Matsuo H, Takanaga H, Ohtani H, Sawada Y: Quantitative prediction of catalepsy induced by amoxapine, cinnarizine and cyclophosphamide in mice. Biopharm Drug Dispos. 2000 May;21(4):129-38. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- Dopamine receptor whose activity is mediated by G proteins which activate adenylyl cyclase
- Specific Function
- Arrestin family protein binding
- Gene Name
- DRD1
- Uniprot ID
- P21728
- Uniprot Name
- D(1A) dopamine receptor
- Molecular Weight
- 49292.765 Da
References
- Nasu R, Matsuo H, Takanaga H, Ohtani H, Sawada Y: Quantitative prediction of catalepsy induced by amoxapine, cinnarizine and cyclophosphamide in mice. Biopharm Drug Dispos. 2000 May;21(4):129-38. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- Alpha-2 adrenergic receptors mediate the catecholamine-induced inhibition of adenylate cyclase through the action of G proteins. The rank order of potency for agonists of this receptor is oxymetazoline > clonidine > epinephrine > norepinephrine > phenylephrine > dopamine > p-synephrine > p-tyramine > serotonin = p-octopamine. For antagonists, the rank order is yohimbine > phentolamine = mianserine > chlorpromazine = spiperone = prazosin > propanolol > alprenolol = pindolol
- Specific Function
- Alpha-1b adrenergic receptor binding
- Gene Name
- ADRA2A
- Uniprot ID
- P08913
- Uniprot Name
- Alpha-2A adrenergic receptor
- Molecular Weight
- 50646.17 Da
References
- Richelson E, Nelson A: Antagonism by antidepressants of neurotransmitter receptors of normal human brain in vitro. J Pharmacol Exp Ther. 1984 Jul;230(1):94-102. [Article]
- Buckley NA, McManus PR: Can the fatal toxicity of antidepressant drugs be predicted with pharmacological and toxicological data? Drug Saf. 1998 May;18(5):369-81. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine(PE)-stimulated ERK signaling in cardiac myocytes
- Specific Function
- Alpha1-adrenergic receptor activity
- Gene Name
- ADRA1A
- Uniprot ID
- P35348
- Uniprot Name
- Alpha-1A adrenergic receptor
- Molecular Weight
- 51486.005 Da
References
- Wei HB, Niu XY: [Comparison of the affinities of amoxapine and loxapine for various receptors in rat brain and the receptor down-regulation after chronic administration]. Yao Xue Xue Bao. 1990;25(12):881-5. [Article]
- Buckley NA, McManus PR: Can the fatal toxicity of antidepressant drugs be predicted with pharmacological and toxicological data? Drug Saf. 1998 May;18(5):369-81. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is Pi turnover
- Specific Function
- G protein-coupled acetylcholine receptor activity
- Gene Name
- CHRM1
- Uniprot ID
- P11229
- Uniprot Name
- Muscarinic acetylcholine receptor M1
- Molecular Weight
- 51420.375 Da
References
- Richelson E: Antimuscarinic and other receptor-blocking properties of antidepressants. Mayo Clin Proc. 1983 Jan;58(1):40-6. [Article]
- Buckley NA, McManus PR: Can the fatal toxicity of antidepressant drugs be predicted with pharmacological and toxicological data? Drug Saf. 1998 May;18(5):369-81. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- Alpha subunit of the heteropentameric ligand-gated chloride channel gated by Gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the brain (PubMed:23909897, PubMed:25489750, PubMed:29950725, PubMed:30602789). GABA-gated chloride channels, also named GABA(A) receptors (GABAAR), consist of five subunits arranged around a central pore and contain GABA active binding site(s) located at the alpha and beta subunit interface(s) (PubMed:29950725, PubMed:30602789). When activated by GABA, GABAARs selectively allow the flow of chloride anions across the cell membrane down their electrochemical gradient (PubMed:23909897, PubMed:29950725, PubMed:30602789). Alpha-1/GABRA1-containing GABAARs are largely synaptic (By similarity). Chloride influx into the postsynaptic neuron following GABAAR opening decreases the neuron ability to generate a new action potential, thereby reducing nerve transmission (By similarity). GABAARs containing alpha-1 and beta-2 or -3 subunits exhibit synaptogenic activity; the gamma-2 subunit being necessary but not sufficient to induce rapid synaptic contacts formation (PubMed:23909897, PubMed:25489750). GABAARs function also as histamine receptor where histamine binds at the interface of two neighboring beta subunits and potentiates GABA response (By similarity). GABAARs containing alpha, beta and epsilon subunits also permit spontaneous chloride channel activity while preserving the structural information required for GABA-gated openings (By similarity). Alpha-1-mediated plasticity in the orbitofrontal cortex regulates context-dependent action selection (By similarity). Together with rho subunits, may also control neuronal and glial GABAergic transmission in the cerebellum (By similarity)
- Specific Function
- Gaba-a receptor activity
- Gene Name
- GABRA1
- Uniprot ID
- P14867
- Uniprot Name
- Gamma-aminobutyric acid receptor subunit alpha-1
- Molecular Weight
- 51801.395 Da
References
- Buckley NA, McManus PR: Can the fatal toxicity of antidepressant drugs be predicted with pharmacological and toxicological data? Drug Saf. 1998 May;18(5):369-81. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- G-protein coupled receptor for 5-hydroxytryptamine (serotonin) (PubMed:1330647, PubMed:18703043, PubMed:19057895). Also functions as a receptor for various drugs and psychoactive substances, including mescaline, psilocybin, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and lysergic acid diethylamide (LSD) (PubMed:28129538). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors (PubMed:28129538). Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways (PubMed:28129538). Signaling activates phospholipase C and a phosphatidylinositol-calcium second messenger system that modulates the activity of phosphatidylinositol 3-kinase and promotes the release of Ca(2+) ions from intracellular stores (PubMed:18703043, PubMed:28129538). Affects neural activity, perception, cognition and mood (PubMed:18297054). Plays a role in the regulation of behavior, including responses to anxiogenic situations and psychoactive substances. Plays a role in intestinal smooth muscle contraction, and may play a role in arterial vasoconstriction
- Specific Function
- 1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine binding
- Gene Name
- HTR2A
- Uniprot ID
- P28223
- Uniprot Name
- 5-hydroxytryptamine receptor 2A
- Molecular Weight
- 52602.58 Da
References
- Palvimaki EP, Roth BL, Majasuo H, Laakso A, Kuoppamaki M, Syvalahti E, Hietala J: Interactions of selective serotonin reuptake inhibitors with the serotonin 5-HT2c receptor. Psychopharmacology (Berl). 1996 Aug;126(3):234-40. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances, including ergot alkaloid derivatives, 1-2,5,-dimethoxy-4-iodophenyl-2-aminopropane (DOI) and lysergic acid diethylamide (LSD). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors. Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Signaling activates a phosphatidylinositol-calcium second messenger system that modulates the activity of phosphatidylinositol 3-kinase and down-stream signaling cascades and promotes the release of Ca(2+) ions from intracellular stores. Regulates neuronal activity via the activation of short transient receptor potential calcium channels in the brain, and thereby modulates the activation of pro-opiomelacortin neurons and the release of CRH that then regulates the release of corticosterone. Plays a role in the regulation of appetite and eating behavior, responses to anxiogenic stimuli and stress. Plays a role in insulin sensitivity and glucose homeostasis
- Specific Function
- 1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine binding
- Gene Name
- HTR2C
- Uniprot ID
- P28335
- Uniprot Name
- 5-hydroxytryptamine receptor 2C
- Molecular Weight
- 51804.645 Da
References
- Glusa E, Pertz HH: Further evidence that 5-HT-induced relaxation of pig pulmonary artery is mediated by endothelial 5-HT(2B) receptors. Br J Pharmacol. 2000 Jun;130(3):692-8. [Article]
- Goodman, Louis Sanford;Brunton, Laurence L.;Chabner, Bruce;Knollman, Bjorn (2011). The Pharmacological Basis of Therapeutics (12th ed.). McGraw-Hill Professional Publishing. [ISBN:978-0-07-162442-8]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- This is one of the several different receptors for 5-hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. The activity of this receptor is mediated by G proteins that stimulate adenylate cyclase. It has a high affinity for tricyclic psychotropic drugs (By similarity). Controls pyramidal neurons migration during corticogenesis, through the regulation of CDK5 activity (By similarity). Is an activator of TOR signaling (PubMed:23027611)
- Specific Function
- G protein-coupled serotonin receptor activity
- Gene Name
- HTR6
- Uniprot ID
- P50406
- Uniprot Name
- 5-hydroxytryptamine receptor 6
- Molecular Weight
- 46953.625 Da
References
- Roth BL, Craigo SC, Choudhary MS, Uluer A, Monsma FJ Jr, Shen Y, Meltzer HY, Sibley DR: Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J Pharmacol Exp Ther. 1994 Mar;268(3):1403-10. [Article]
- Goodman, Louis Sanford;Brunton, Laurence L.;Chabner, Bruce;Knollman, Bjorn (2011). The Pharmacological Basis of Therapeutics (12th ed.). McGraw-Hill Professional Publishing. [ISBN:978-0-07-162442-8]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- This is one of the several different receptors for 5-hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. The activity of this receptor is mediated by G proteins that stimulate adenylate cyclase
- Specific Function
- G protein-coupled serotonin receptor activity
- Gene Name
- HTR7
- Uniprot ID
- P34969
- Uniprot Name
- 5-hydroxytryptamine receptor 7
- Molecular Weight
- 53554.43 Da
References
- Roth BL, Craigo SC, Choudhary MS, Uluer A, Monsma FJ Jr, Shen Y, Meltzer HY, Sibley DR: Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J Pharmacol Exp Ther. 1994 Mar;268(3):1403-10. [Article]
- Goodman, Louis Sanford;Brunton, Laurence L.;Chabner, Bruce;Knollman, Bjorn (2011). The Pharmacological Basis of Therapeutics (12th ed.). McGraw-Hill Professional Publishing. [ISBN:978-0-07-162442-8]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- Dopamine receptor whose activity is mediated by G proteins which inhibit adenylyl cyclase. Promotes cell proliferation
- Specific Function
- Dopamine neurotransmitter receptor activity, coupled via gi/go
- Gene Name
- DRD3
- Uniprot ID
- P35462
- Uniprot Name
- D(3) dopamine receptor
- Molecular Weight
- 44194.315 Da
References
- Burstein ES, Ma J, Wong S, Gao Y, Pham E, Knapp AE, Nash NR, Olsson R, Davis RE, Hacksell U, Weiner DM, Brann MR: Intrinsic efficacy of antipsychotics at human D2, D3, and D4 dopamine receptors: identification of the clozapine metabolite N-desmethylclozapine as a D2/D3 partial agonist. J Pharmacol Exp Ther. 2005 Dec;315(3):1278-87. Epub 2005 Aug 31. [Article]
- Goodman, Louis Sanford;Brunton, Laurence L.;Chabner, Bruce;Knollman, Bjorn (2011). The Pharmacological Basis of Therapeutics (12th ed.). McGraw-Hill Professional Publishing. [ISBN:978-0-07-162442-8]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- Dopamine receptor responsible for neuronal signaling in the mesolimbic system of the brain, an area of the brain that regulates emotion and complex behavior. Activated by dopamine, but also by epinephrine and norepinephrine, and by numerous synthetic agonists and drugs (PubMed:16423344, PubMed:27659709, PubMed:29051383, PubMed:9003072). Agonist binding triggers signaling via G proteins that inhibit adenylyl cyclase (PubMed:16423344, PubMed:27659709, PubMed:29051383, PubMed:7512953, PubMed:7643093). Modulates the circadian rhythm of contrast sensitivity by regulating the rhythmic expression of NPAS2 in the retinal ganglion cells (By similarity)
- Specific Function
- Dopamine binding
- Gene Name
- DRD4
- Uniprot ID
- P21917
- Uniprot Name
- D(4) dopamine receptor
- Molecular Weight
- 43900.84 Da
References
- Burstein ES, Ma J, Wong S, Gao Y, Pham E, Knapp AE, Nash NR, Olsson R, Davis RE, Hacksell U, Weiner DM, Brann MR: Intrinsic efficacy of antipsychotics at human D2, D3, and D4 dopamine receptors: identification of the clozapine metabolite N-desmethylclozapine as a D2/D3 partial agonist. J Pharmacol Exp Ther. 2005 Dec;315(3):1278-87. Epub 2005 Aug 31. [Article]
- Goodman, Louis Sanford;Brunton, Laurence L.;Chabner, Bruce;Knollman, Bjorn (2011). The Pharmacological Basis of Therapeutics (12th ed.). McGraw-Hill Professional Publishing. [ISBN:978-0-07-162442-8]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- In peripheral tissues, the H1 subclass of histamine receptors mediates the contraction of smooth muscles, increase in capillary permeability due to contraction of terminal venules, and catecholamine release from adrenal medulla, as well as mediating neurotransmission in the central nervous system
- Specific Function
- G protein-coupled serotonin receptor activity
- Gene Name
- HRH1
- Uniprot ID
- P35367
- Uniprot Name
- Histamine H1 receptor
- Molecular Weight
- 55783.61 Da
References
- Richelson E, Nelson A: Antagonism by antidepressants of neurotransmitter receptors of normal human brain in vitro. J Pharmacol Exp Ther. 1984 Jul;230(1):94-102. [Article]
- Kind
- Protein group
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine(PE)-stimulated ERK signaling in cardiac myocytes
- Specific Function
- Alpha1-adrenergic receptor activity
Components:
Name | UniProt ID |
---|---|
Alpha-1A adrenergic receptor | P35348 |
Alpha-1B adrenergic receptor | P35368 |
Alpha-1D adrenergic receptor | P25100 |
References
- Richelson E, Nelson A: Antagonism by antidepressants of neurotransmitter receptors of normal human brain in vitro. J Pharmacol Exp Ther. 1984 Jul;230(1):94-102. [Article]
- Goodman, Louis Sanford;Brunton, Laurence L.;Chabner, Bruce;Knollman, Bjorn (2011). The Pharmacological Basis of Therapeutics (12th ed.). McGraw-Hill Professional Publishing. [ISBN:978-0-07-162442-8]
- Kind
- Protein group
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is Pi turnover
- Specific Function
- G protein-coupled acetylcholine receptor activity
Components:
References
- Richelson E, Nelson A: Antagonism by antidepressants of neurotransmitter receptors of normal human brain in vitro. J Pharmacol Exp Ther. 1984 Jul;230(1):94-102. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- G-protein coupled receptor for 5-hydroxytryptamine (serotonin) (PubMed:18703043, PubMed:23519210, PubMed:7926008, PubMed:8078486, PubMed:8143856, PubMed:8882600). Also functions as a receptor for various ergot alkaloid derivatives and psychoactive substances (PubMed:12970106, PubMed:18703043, PubMed:23519210, PubMed:23519215, PubMed:24357322, PubMed:28129538, PubMed:7926008, PubMed:8078486, PubMed:8143856). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors (PubMed:23519215, PubMed:28129538, PubMed:8078486, PubMed:8143856, PubMed:8882600). Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways (PubMed:23519215, PubMed:28129538). Signaling activates a phosphatidylinositol-calcium second messenger system that modulates the activity of phosphatidylinositol 3-kinase and down-stream signaling cascades and promotes the release of Ca(2+) ions from intracellular stores (PubMed:18703043, PubMed:23519215, PubMed:28129538, PubMed:8078486, PubMed:8143856, PubMed:8882600). Plays a role in the regulation of dopamine and 5-hydroxytryptamine release, 5-hydroxytryptamine uptake and in the regulation of extracellular dopamine and 5-hydroxytryptamine levels, and thereby affects neural activity. May play a role in the perception of pain (By similarity). Plays a role in the regulation of behavior, including impulsive behavior (PubMed:21179162). Required for normal proliferation of embryonic cardiac myocytes and normal heart development. Protects cardiomyocytes against apoptosis. Plays a role in the adaptation of pulmonary arteries to chronic hypoxia. Plays a role in vasoconstriction. Required for normal osteoblast function and proliferation, and for maintaining normal bone density. Required for normal proliferation of the interstitial cells of Cajal in the intestine (By similarity)
- Specific Function
- G protein-coupled serotonin receptor activity
- Gene Name
- HTR2B
- Uniprot ID
- P41595
- Uniprot Name
- 5-hydroxytryptamine receptor 2B
- Molecular Weight
- 54297.41 Da
References
- Glusa E, Pertz HH: Further evidence that 5-HT-induced relaxation of pig pulmonary artery is mediated by endothelial 5-HT(2B) receptors. Br J Pharmacol. 2000 Jun;130(3):692-8. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- Forms serotonin (5-hydroxytryptamine/5-HT3)-activated cation-selective channel complexes, which when activated cause fast, depolarizing responses in neurons
- Specific Function
- Excitatory extracellular ligand-gated monoatomic ion channel activity
- Gene Name
- HTR3A
- Uniprot ID
- P46098
- Uniprot Name
- 5-hydroxytryptamine receptor 3A
- Molecular Weight
- 55279.835 Da
References
- Gozlan H, Saddiki-Traki F, Merahi N, Laguzzi R, Hamon M: [Preclinical pharmacology of amoxapine and amitriptyline. Implications of serotoninergic and opiodergic systems in their central effect in rats]. Encephale. 1991 Dec;17 Spec No 3:415-22. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Signaling inhibits adenylate cyclase activity and activates a phosphatidylinositol-calcium second messenger system that regulates the release of Ca(2+) ions from intracellular stores. Plays a role in the regulation of 5-hydroxytryptamine release and in the regulation of dopamine and 5-hydroxytryptamine metabolism. Plays a role in the regulation of dopamine and 5-hydroxytryptamine levels in the brain, and thereby affects neural activity, mood and behavior. Plays a role in the response to anxiogenic stimuli
- Specific Function
- G protein-coupled serotonin receptor activity
- Gene Name
- HTR1A
- Uniprot ID
- P08908
- Uniprot Name
- 5-hydroxytryptamine receptor 1A
- Molecular Weight
- 46106.335 Da
References
- Gozlan H, Saddiki-Traki F, Merahi N, Laguzzi R, Hamon M: [Preclinical pharmacology of amoxapine and amitriptyline. Implications of serotoninergic and opiodergic systems in their central effect in rats]. Encephale. 1991 Dec;17 Spec No 3:415-22. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for ergot alkaloid derivatives, various anxiolytic and antidepressant drugs and other psychoactive substances, such as lysergic acid diethylamide (LSD). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity. Arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Regulates the release of 5-hydroxytryptamine, dopamine and acetylcholine in the brain, and thereby affects neural activity, nociceptive processing, pain perception, mood and behavior. Besides, plays a role in vasoconstriction of cerebral arteries
- Specific Function
- G protein-coupled serotonin receptor activity
- Gene Name
- HTR1B
- Uniprot ID
- P28222
- Uniprot Name
- 5-hydroxytryptamine receptor 1B
- Molecular Weight
- 43567.535 Da
References
- Gozlan H, Saddiki-Traki F, Merahi N, Laguzzi R, Hamon M: [Preclinical pharmacology of amoxapine and amitriptyline. Implications of serotoninergic and opiodergic systems in their central effect in rats]. Encephale. 1991 Dec;17 Spec No 3:415-22. [Article]
- Kind
- Protein group
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- Alpha-2 adrenergic receptors mediate the catecholamine-induced inhibition of adenylate cyclase through the action of G proteins. The rank order of potency for agonists of this receptor is oxymetazoline > clonidine > epinephrine > norepinephrine > phenylephrine > dopamine > p-synephrine > p-tyramine > serotonin = p-octopamine. For antagonists, the rank order is yohimbine > phentolamine = mianserine > chlorpromazine = spiperone = prazosin > propanolol > alprenolol = pindolol
- Specific Function
- Alpha-1b adrenergic receptor binding
Components:
Name | UniProt ID |
---|---|
Alpha-2A adrenergic receptor | P08913 |
Alpha-2B adrenergic receptor | P18089 |
Alpha-2C adrenergic receptor | P18825 |
References
- Richelson E, Nelson A: Antagonism by antidepressants of neurotransmitter receptors of normal human brain in vitro. J Pharmacol Exp Ther. 1984 Jul;230(1):94-102. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Binder
- General Function
- The H4 subclass of histamine receptors could mediate the histamine signals in peripheral tissues. Displays a significant level of constitutive activity (spontaneous activity in the absence of agonist)
- Specific Function
- G protein-coupled acetylcholine receptor activity
- Gene Name
- HRH4
- Uniprot ID
- Q9H3N8
- Uniprot Name
- Histamine H4 receptor
- Molecular Weight
- 44495.375 Da
References
- Lim HD, van Rijn RM, Ling P, Bakker RA, Thurmond RL, Leurs R: Evaluation of histamine H1-, H2-, and H3-receptor ligands at the human histamine H4 receptor: identification of 4-methylhistamine as the first potent and selective H4 receptor agonist. J Pharmacol Exp Ther. 2005 Sep;314(3):1310-21. Epub 2005 Jun 9. [Article]
- Kind
- Protein group
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Binder
- General Function
- Alpha subunit of the heteropentameric ligand-gated chloride channel gated by Gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the brain (PubMed:23909897, PubMed:25489750, PubMed:29950725, PubMed:30602789). GABA-gated chloride channels, also named GABA(A) receptors (GABAAR), consist of five subunits arranged around a central pore and contain GABA active binding site(s) located at the alpha and beta subunit interface(s) (PubMed:29950725, PubMed:30602789). When activated by GABA, GABAARs selectively allow the flow of chloride anions across the cell membrane down their electrochemical gradient (PubMed:23909897, PubMed:29950725, PubMed:30602789). Alpha-1/GABRA1-containing GABAARs are largely synaptic (By similarity). Chloride influx into the postsynaptic neuron following GABAAR opening decreases the neuron ability to generate a new action potential, thereby reducing nerve transmission (By similarity). GABAARs containing alpha-1 and beta-2 or -3 subunits exhibit synaptogenic activity; the gamma-2 subunit being necessary but not sufficient to induce rapid synaptic contacts formation (PubMed:23909897, PubMed:25489750). GABAARs function also as histamine receptor where histamine binds at the interface of two neighboring beta subunits and potentiates GABA response (By similarity). GABAARs containing alpha, beta and epsilon subunits also permit spontaneous chloride channel activity while preserving the structural information required for GABA-gated openings (By similarity). Alpha-1-mediated plasticity in the orbitofrontal cortex regulates context-dependent action selection (By similarity). Together with rho subunits, may also control neuronal and glial GABAergic transmission in the cerebellum (By similarity)
- Specific Function
- Gaba-a receptor activity
Components:
References
- Wei HB, Niu XY: [Comparison of the affinities of amoxapine and loxapine for various receptors in rat brain and the receptor down-regulation after chronic administration]. Yao Xue Xue Bao. 1990;25(12):881-5. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Binder
- General Function
- Mediates sodium- and chloride-dependent transport of dopamine (PubMed:10375632, PubMed:11093780, PubMed:1406597, PubMed:15505207, PubMed:19478460, PubMed:8302271). Also mediates sodium- and chloride-dependent transport of norepinephrine (also known as noradrenaline) (By similarity). Regulator of light-dependent retinal hyaloid vessel regression, downstream of OPN5 signaling (By similarity)
- Specific Function
- Amine binding
- Gene Name
- SLC6A3
- Uniprot ID
- Q01959
- Uniprot Name
- Sodium-dependent dopamine transporter
- Molecular Weight
- 68494.255 Da
References
- Goodman, Louis Sanford;Brunton, Laurence L.;Chabner, Bruce;Knollman, Bjorn (2011). The Pharmacological Basis of Therapeutics (12th ed.). McGraw-Hill Professional Publishing. [ISBN:978-0-07-162442-8]
- PDSP Ki Database [Link]
Enzymes
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- SubstrateInhibitor
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of fatty acids, steroids and retinoids (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:19965576, PubMed:20972997). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 20-hydroxyeicosatetraenoic acid ethanolamide (20-HETE-EA) and 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:18698000, PubMed:21289075). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Catalyzes the oxidative transformations of all-trans retinol to all-trans retinal, a precursor for the active form all-trans-retinoic acid (PubMed:10681376). Also involved in the oxidative metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants
- Specific Function
- Anandamide 11,12 epoxidase activity
- Gene Name
- CYP2D6
- Uniprot ID
- P10635
- Uniprot Name
- Cytochrome P450 2D6
- Molecular Weight
- 55768.94 Da
References
- Shin HC, Kim HR, Cho HJ, Yi H, Cho SM, Lee DG, Abd El-Aty AM, Kim JS, Sun D, Amidon GL: Comparative gene expression of intestinal metabolizing enzymes. Biopharm Drug Dispos. 2009 Nov;30(8):411-21. doi: 10.1002/bdd.675. [Article]
- Reeves KC, Virk S, Niedermier J, Duchemin AM: Addition of amoxapine improves positive and negative symptoms in a patient with schizophrenia. Ther Adv Psychopharmacol. 2013 Dec;3(6):340-2. doi: 10.1177/2045125313499363. [Article]
- Gudin J: Opioid therapies and cytochrome p450 interactions. J Pain Symptom Manage. 2012 Dec;44(6 Suppl):S4-14. doi: 10.1016/j.jpainsymman.2012.08.013. [Article]
- The Inhibitory Effect of Amoxapine on Cytochrome P450 Enzyme Activity in Human Liver Microsomes [Link]
Carriers
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- No
- General Function
- Functions as a transport protein in the blood stream. Binds various ligands in the interior of its beta-barrel domain. Also binds synthetic drugs and influences their distribution and availability in the body. Appears to function in modulating the activity of the immune system during the acute-phase reaction
- Specific Function
- Not Available
- Gene Name
- ORM1
- Uniprot ID
- P02763
- Uniprot Name
- Alpha-1-acid glycoprotein 1
- Molecular Weight
- 23539.43 Da
References
- Ferry DG, Caplan NB, Cubeddu LX: Interaction between antidepressants and alpha 1-adrenergic receptor antagonists on the binding to alpha 1-acid glycoprotein. J Pharm Sci. 1986 Feb;75(2):146-9. doi: 10.1002/jps.2600750208. [Article]
Drug created at June 13, 2005 13:24 / Updated at August 26, 2024 19:23